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GENERAL INTRODUCTION 

Calcium homeostasis is a complex endocrinological process involv

ing phosphorus, magnesium, parathyroid hormone, calcitonin, and the 

vitamin D metabolites. This homeostatic mechanism is capable of 

maintaining normal blood calcium concentrations under most conditions. 

However, there are certain pathological conditions in which the homeo

static mechanism is insufficient. One such state is exhibited in the 

periparturient dairy cow - parturient paresis fmilk fever). The 

outstanding clinical features of this syndrome are severe hypocalcemia 

and recumbency. Left untreated, the cow becomes comatose and would 

die. 

The incidence of parturient paresis is greatly reduced by feeding 

cows a low calcium diet the 2 weeks before parturition (Goings e_t £l., 

1974) . Green e£ al. (1981) found that low calcium diets act to 

increase blood concentrations of immunoreactive parathyroid hormone and 

1,25-dihydroxyvitamin D. By stimulating production of these homeo

static hormones prior to parturition, the calcium demands associated 

with the onset of lactation could be adequately met. However, using 

low calcium diets (< 20 g calcium/day) to prevent parturient paresis 

has not been universally feasible. Therefore, other methods for 

preventing parturient paresis have been sought. 

Since endogenously-produced parathyroid hormone and 1,25-dihy-

droxyvitamin D are capable of preventing parturient paresis, perhaps by 

exogenously supplying the cow with these hormones prior to parturition 
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the physiologic and clinical benefits of a low calcium diet can be 

achieved. In these experiments, the ability of vitamin D metabolites 

and parathyroid hormone to prevent parturient paresis were assessed. 

Dissertation Format 

This dissertation is presented in the alternate thesis format, 

which includes three manuscripts. The paper in Section I is coauthored 

by R. L. Horst, E. T. Littledike, A. Boris, and M. R. Uskokovic, and 

has been accepted for publication in the Journal of Nutrition. The 

papers in Sections II and III are coauthored by R. L. Horst and E. T. 

Littledike. Both are being submitted to the Journal of Dairy Science 

for publication. A review of the literature precedes the first 

manuscript. It is primarily concerned with parathyroid hormone. At 

the end of each section, a separate Literature Cited section has been 

included to facilitate publication. A general Summary and Discussion 

follows the final manuscript. 

The doctoral candidate, Jesse Paul Goff, was the principal 

Investigator in each of these studies. 
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LITERATURE REVIEW 

Calcium Homeostasis 

Intracellular calcium concentration 

Free calcium ion concentration within the cytosol of cells is 

-7 -8 
estimated to be between 10 and 10 M (Kretsinger, 1979). Under 

normal conditions, extracellular fluid calcium ion concentration is 

about 1.2 mM. This means that the extracellular free calcium ion 

concentration Is 10,000 to 100,000 times the Intracellular free 

calcium concentration. Internal calcium ion concentration is pre

cisely controlled since even minor changes can have wide-ranging 

physiologic, and even pathologic, effects (Carafoli and Pennlston, 

1985). Calcium ions act as a second messenger, relaying electrical 

and chemical messages that arrive at the cell surface to the biochemi

cal machinery within the cell. Before the implications of changes in 

Intracellular calcium concentration can be understood, it is necessary 

to first discuss how very low calcium ion concentrations within the 

cell can be so precisely maintained against a tremendous concentration 

gradient. Extracellular calcium ions continually leak into the 

cytosolic compartment of the cell through calcium channels located 

within the plasma membrane. There are three mechanisms available for 

removal of calcium ions from the cytosolic compartment of the cell. 

Initially, the free calcium ions can become bound to proteins within 

the cytosol. There are a great number of proteins that are special

ized for binding calcium within the cytosol; some of them, e.g., 

calmodulin, are important as physiologic messengers in addition to 
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their role in regulating calcium ion concentration (Rasmussen, 1980). 

The capacity of this mechanism for removal of cytosolic calcium is 

very low. The second mechanism is capable of moving many calcium ions 

out of the cytosol. Within the cell membrane there is a protein 

structuré that allows sodium ions outside the cell to be exchanged for 

calcium ions inside the cell. Three sodium ions are brought into the 

cell for every calcium ion extruded. The sodium gradient is the 

driving force for this process. Ultimately, the sodium Jons must be 

+ + 
actively pumped out of the cell by a membrane-bound Na -K -ATPase 

(Carafoli and Penniston, 1985). Third, calcium ions can be pumped 

outside the cell or into cell organelles — in particular, the 

cisternae of the endoplasmic reticulum (sarcoplasmic reticulum of 

muscle) and the mitochondria. This is accomplished by a membrane-

bound Ca -Mg -ATPase (Borle, 1967). As calcium concentrations 

within the cytosol increase, binding sites on calmodulin become fully 

occupied and calmodulin changes its configuration. Calcium-activated 

calmodulin then becomes associated with the Ca -Mg ATPase embedded 

within the membranes, initiating active pumping of calcium from the 

cytosol (Carafoli and Penniston, 1985). 

The mechanisms that remove calcium ions from the cytosol are able 

to compensate for the normal rate of influx of calcium ions into the 

cell from the extracellular fluid so that intracellular calcium ion 

concentration remains unchanged. However, if the rate of entry of 

calcium into the cell changes, the intracellular calcium ion concen

tration would be expected to change. In some excitable cells. 
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chemical or electrical excitation of the plasma membrane induces an 

increase in the size of the calcium channels, allowing more into the 

cell. In the case of a muscle cell, this triggers contraction. 

However, in most of the cells of the body the calcium channels do not 

appear to be so flexible. Therefore, changes in extracellular calcium 

ion concentrations play a major role in determining the rate of influx 

of calcium into a cell (Carafoli and Penniston, 1985). Cytosolic 

calcium ion concentration in parathyroid gland cells seem to be 

especially sensitive to changes in extracellular calcium ion concen

tration. 

Parathyroid glands 

The parathyroid glands of mammals, birds, and amphibians arise 

from differentiation of the third and fourth branchial pouches of the 

developing embryo. In mammals, the pair of parathyroid glands arising 

from the third branchial pouch tend to migrate with the developing 

thymus gland. The pair of parathyroid glands arising from the fourth 

branchial pouch migrate with the thyroid primordium (Roth and 

Schiller, 1976). In some species, one pair of parathyroid glands 

fails to develop while in others additional accessory parathyroid 

tissue can be found (Table 1). Fish apparently do not have a parathy

roid gland (Pang, 1973). 

The histology of the parathyroid gland is similar in all species. 

There is species variation in the amount of stromal fat present, 

vascularity, and amount of fibrous connective tissue, but parathyroid 

hormone (PTH)-producing chief cells of all species are similar, even 
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Table 1. Parathyroid gland location in several species 

Chicken - III and IV (often coalesced together) 
- lie near origin of common carotid arteries 
- caudal or within thyroid 
- occasionally have accessory glands 

Rat, mouse - III only 
- embedded in dorsolateral border of cranial pole 

of thyroid 
- occasionally accessory tissue within the thymus 

- Ill-within carotid sheath anywhere from base of 
tongue to thymus 

- IV-within thyroid gland 

- Ill-within fat cranial, dorsal, and lateral to 
thyroid 

- IV-near or within thymus at bifurcation of 
common carotid artery 

- Ill-within medial surface of thyroid near trachea 
- IV-near common carotid artery near caudal pole of 

thyroid along superior thyroid artery. (Calf 
may surround internal carotid near its origin) 

Sheep and goat - HI-within medial surface of thyroid near trachea 
- IV-near carotid bifurcation, often along sub

maxillary artery 

Pig - III only 
- within thymus or attached to common carotid 

artery 

Dog - Ill-dorsolateral aspect of thyroid 
- IV-caudal portion of cranial pole of thyroid 
- Accessory glands within thymus are common 

Man - Ill-within inferior pole of thyroid 
- IV-slightly superior to thyroid where middle 

thyroid artery crosses recurrent laryngeal 
nerve 

Rabbit 

Horse 

Cow 
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at the electron microscope level (AltenMhr, 1972; Capen, 1971). 

Oxyphil cells are common in some species and are most common in the 

elderly. Oxyphils are believed to be a degenerated form of the chief 

cell. They are not capable of synthesizing PTH (Hunger and Roth, 

1963). 

PTH biosynthesis 

The mRNA that directs the synthesis of parathyroid hormone codes 

the production of a 115 amino acid peptide (PRE-PRO-PTH) consisting of 

an initiator peptide (2 amino acids), a signal sequence (23 amino 

acids), a pro-component (6 amino acids), and the parathyroid hormone 

(84 amino acids). The entire 115 amino acid sequence never exists as 

such within the parathyroid cell because the peptide is cleaved before 

translation is concluded. The initiator peptide is removed when the 

nascent chain is only 20-30 amino acids long (Habener, 1981a). 

A signal sequence is common to all proteins that are produced by. 

cells for export out of the cell. It facilitates transport of the 

growing peptide from the ribosome surface into the cisternae of the 

rough endoplasmic reticulum (Lingappa and Blobel, 1980). The signal 

sequence is cleaved off the peptide just after translation is com

pleted. 

The 90 amino acid peptide remaining (PRO-PTH) is transported to 

the Golgi apparatus for further processing. There an enzyme cleaves 

the first six amino acids from the amino terminal end of the peptide, 

converting it to PTH. PTH-(l-84) then is incorporated into membrane-

bound granules where it is stored until secreted. No PRO-PTH is 
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thought to be Incorporated into secretory granules (Habener a^., 

1976). Electron microscopists describe two types of secretory 

granules within parathyroid cells (Roth and Capen, 1974). Type I 

granules have a large core relative to vesicle diameter. Type II 

granules are believed to be the storage form of nascent PTH. Type II 

granules have a smaller core. They are the predominant form seen in 

animals under hypercalcemic conditions. They contain some acid 

phosphatase activity indicating the presence of hydrolytic enzymes. 

Type II granules arise from Type I granules (probably after fusion 

with lysosomes) and appear to represent an intracellular method for 

degradation of PTH-(l-84), especially under hypercalcemic conditions 

(Setoguti jet al., 1985a) . 

Up to 70% of nascent PTH-(1-84) is not incorporated into se

cretory granules within the Golgi apparatus, but is released into the 

cytoplasm (Morrissey £t al., 1980) where it is vulnerable to proteo

lysis. Most commonly, cleavage occurs between the 33-34 position, but 

cleavage can occur at many sites (Hanley ̂  al., 1978). Parathyroid 

glands also possess cathepsin B, which cleaves PTH-(l-84) between 

amino acids 36 and 37 and cathepsin D, which cleaves PTH-(1-84) 

between amino acids 34 and 35 (Cohn and Elting, 1983). 

Amino terminal fragments PTH-(l-29) and PTH-(l-34) are produced 

within the parathyroid cells (Morrissey £t al., 1980). However, they 

apparently undergo rapid intracellular degradation as they cannot be 

detected in venous effluent from parathyroid glands in vivo (Mayer ̂  
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al., 1979) nor can they be detected In media in which parathyroid 

cells have been cultured ̂  vitro (Morrissey ̂  £l., 1980) . 

A major regulatory site for the production of PTH is DNA synthe

sis leading to multiplication of parathyroid cells. Chronic hypocal

cemia stimulates hyperplasia of the parathyroid glands with concomi

tant increases in PTH production (Habener, 1981a). 

Synthesis of new hormone by the parathyroid cells is apparently 

continuous and not a site of regulation. Neither transcription nor 

translation of PTH mRNA is greatly affected by the calcium status of 

the animal (Habener, 1981b) or by the concentration of cyclic AMP 

within the parathyroid cell (Morrissey and Cohn, 1979a). 

Post-translational intracellular degradation of PTH-(l-84) may be 

an important means of regulating the production of biologically active 

PTH within the glands. Intracellular degradation of PTH-(l-84) Is 

stimulated by high extracellular concentrations of calcium, whereas 

low extracellular calcium concentration inhibits intracellular 

destruction of PTH (Habener e^ , 1975; Chu e^ al., 1973). 

Parathyroid glands also produce and release a glycoprotein with a 

molecular weight of around 150,000 known as parathyroid secretory 

protein (Morrissey and Cohn, 1980). Its release from parathyroid 

cells is governed by the same factors that govern PTH secretion. Its 

function is unknown. It has been suggested that parathyroid secretory 

protein is a component of the Golgi vesicle whose extrusion from the 

parathyroid cells is coincidental to PTH secretion (Habener and Potts, 

1979). 
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Peripheral metabolism of PTH 

Circulating immunoreactive PTH consists of a mixture of intact 

PTH-(l-84) and both carboxy- and amino-terminal fragments of 

PTH-(l-84) (Berson and Yalow, 1968). Metabolism of intact hormone by 

peripheral organs contributes greatly to the heterogeneity of the 

circulating PTH (Canterbury et al., 1975). Intravenously injected 

radioiodine-labeled intact PTH-(1-84) is rapidly cleaved by peripheral 

organs, primarily between amino acids 33-34 (Segre et , 1974) and 

36-37 (Segre £t al., 1976), of the PTH molecule. Since the biological 

activity of PTH resides within the first 27 amino acids (Marcus and 

Aurbach, 1969; Parsons et al., 1973; Treagear al., 1973), it is 

likely that cleavage of PTH-(1-84) at these sites can give rise to 

fragments of PTH that are biologically active. The major organs 

involved in the peripheral catabolism of PTH are liver, kidney, and 

bone. 

Fang and Tashjian (1972) observed that the rate of disappearance 

of intact PTH from the plasma was dramatically decreased following 

partial hepatectomy of rats. Canterbury £!• (1975) found that 

isolated perfused rat liver was capable of cleaving PTH-(l-84) to two 

fragments, the amino (NH^)-terminal fragment, retaining full 

biological activity (based on rat renal cAMP production), while the 

carboxy (COOH)-terminal fragment was devoid of activity. They also 

observed that production of the NHg-terminal fragment was inversely 

proportional to the concentration of calcium in the perfusion media. 

More recent evidence suggests that only the intact hormone is taken up 
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by the liver, for there is no arterial-venous difference in 

concentrations of NH2-terminal or COOH-terminal fragments across the 

liver in dogs (Martin et al., 1976). 

An interesting observation is that the hepatic uptake and catabo-

lism of PTH-(l-84) is markedly reduced in chronic renal failure 

(Hruska eJC al., 1981) . 

The Kupffer cells of the liver seem to be the cells responsible 

for cleavage of intact PTH (Segre £t al., 1981). Kupffer cells are 

the macrophages of the liver tissue. 

The kidney also plays a major role in PTH metabolism. Several 

laboratories have reported that intact PTH-(l-84) is degraded by 

kidney tissue in vitro (Chu et al., 1975; Martin et al., 1977). In 

studies of isolated perfused kidney of dogs, it was found that the 

rate of degradation of PTH was accelerated in the presence of hypocal

cemia and retarded in the presence of elevated calcium concentration 

in the perfusate. Both COOH-terminal and NH2-terminal PTH fragments 

are produced and released into the circulation by the kidney. 

Nephrectomy leads to greatly diminished metabolic clearance rate 

of PTH and PTH fragments (Hruska £t al^., 1981; Martin ̂  al• » 1977). 

The studies of Freitag £t al. (1978), Kau and Maack (1977), and Martin 

et al. (1977) were instrumental in the development of the following 

model for renal clearance of PTH as described in a review article by 

Slatopolsky £t a^. (1981). All forms of PTH undergo glomerular 

filtration and tubular reabsorption. The biologically active forms of 

PTH (intact PTH-(l-84) and NHg-terminal fragments) are removed by both 
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glomerular filtration and by uptake from peritubular capillaries 

followed by degradation within renal tubular epithelium. Biologically 

inactive COOH-terminal fragments can only be cleared by glomerular 

filtration. When glomerular filtration rate is decreased, as it is in 

patients with chronic renal failure, the clearance rate of all PTH 

fragments- is greatly decreased. Because NHg-terminal PTH can still be 

removed by tubular cell uptake from peritubular capillaries, the 

relative amount of COOH-terminal PTH in plasma rises faster than does 

NHg-terminal PTH. These COOH-terminal fragments are biologically 

inactive, in terms of calcium homeostasis, but recent reports indicate 

these COOH-terminal fragments, along with the NH2-terminal fragments, 

are potentially toxic in patients with renal failure. Slatopolsky et 

al. (1980) have reviewed some of these effects that include osteitis 

fibrosa, encephalopathy, neuropathy due to brain tissue calcification, 

glucose intolerance, acidosis, hyperlipidemia, and anemia. 

The metabolism of PTH in bone is currently a subject of consider

able controversy. Many laboratories report that intact PTH-(1-84) is 

removed from the circulation by bone and stimulates resorption of bone 

calcium (Calvo et al., 1985; Goltzman, 1978; Peck e£ al., 1973). 

However, there is a great deal of evidence that indicates that intact 

PTH must be cleaved to an NH2-terminal fragment for complete activity 

in bone. Parsons and Robinson (1968) found that perfusion of bPTH-

(1-84) into the isolated feline tibia nutrient artery had little 

effect on release of calcium from the bone. However, if the bPTH-

(1-84) was first circulated through the whole body prior to infusion, 
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it greatly stimulated calcium release from the bone. Martin et al. 

(1978) reported that isolated perfused canine tibia selectively takes 

up bPTH-(l-3A) but not bPTH-(l-84). They also observed that only 

bPTH-(l-34) would markedly stimulate release of cAMP from the perfused 

tibia. Recently, Sugimoto et al. (1985) developed a system for 

perfusion of isolated rat femora. They conclude that hPTH-(l-34) is 

capable of stimulating cAMP release from bone and that hPTH-(l-84) is 

not. 

Most of the work that ascribes PTH-(l-84) full biologic activity 

in bone has been done using fetal rat calvaria. There is little doubt 

that PTH-(l-84) is capable of stimulating adenylate cyclase in these 

cells in culture. However, Freitag jet al. (1979) suggest that fetal 

rat calvaria first catabolizes PTH-(l-84) to NH2-terminal fragments 

which then activate adenylate cyclase of the cultured cells. Adult 

bone tissue does not seem to be capable of catabolizing intact PTH-

(1-84) (Martin et al», 1978). Therefore, a tissue-age effect may 

account for some of the differences in the activity ascribed to 

PTH-(l-84). Calvo £t al. (1985) reported that PTH-(l-84) was fully 

capable of stimulating skeletal release of cAMP when administered to 

perfused mature rat hindquarters. The model excluded the possibility 

of PTH catabolism by visceral organs but maintained the bone situ. 

These results conflict with those of Sugimoto e_t al. (1985). The only 

difference between the two experiments was the presence of muscle and 

skin in the preparation of Calvo _et aA. (1985). Perhaps the 

PTH-(l-84) was catabolized by this extra-osseous tissue. 
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The relative contribution of bone, liver, and kidney to the 

metabolic clearance of PTH-(1-84) has been calculated in adult dogs by 

determining arteriovenous differences of immunoreactive bPTH-(l-84) 

across these organs. Slatopolsky £t £l. (1981) found that 56% of 

PTH-(1-84) was "cleared" from the blood by the liver, 33% was cleared 

by the kidneys, and bone cleared less than 5% of the PTH-(1-84), 

leaving 6% unaccounted for. 

If PTH-(l-84) requires extraskeletal cleavage to achieve complete 

activity in bone, the peripheral catabolism of PTH-(1-84) secreted by 

the parathyroid glands may represent an activating step rather than 

simply a degradative step. Regulation of liver and kidney metabolism 

of PTH may significantly affect the circulating levels of NHg-Cerminal 

PTH fragments and, hence, the effects of PTH at the level of bone. 

PTH Secretion 

The cells of the parathyroid gland are continuously engaged in 

the biosynthesis, partial degradation, and secretion of PTH. Little 

active product is stored within the cells, in contrast to other 

peptide-secreting endocrine organs. For instance, pancreatic cells 

contain enough insulin to satisfy normal needs for several days, 

whereas PTH reserves do not support normal requirements for more than 

6-7 hours (Martin, 1985). 

The parathyroid chief cells never totally shut down secretion of 

PTH. Individual chief cells seem to maintain a basal level of PTH 

secretion even if exposed to the suppressive effect of a sustained 
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hypercalcemia (Mayer et al., 1979). In the event of sustained hyper

calcemia, the only way to decrease PTH concentration in the blood is 

to decrease the amount of parathyroid tissue (Habener, 1981a; Mayer 

al., 1976). 

Studies on the effects of different secretagogues on parathyroid 

cells indicate two intracellular pools of PTH are available for 

secretion (Morrissey and Cohn, 1979b). One pool contains newly 

synthesized hormone, whereas the other contains older stored PTH 

(Morrissey and Cohn, 1979b) which may very well correspond to the two 

types of secretory granules that have been observed within parathyroid 

cells (Setoguti £t al., 1985a). 

There are at least two major pathways by which PTH secretion is 

stimulated. The first pathway is mediated by cytosolic calcium ion 

concentration. Early reports indicated that a decrease in cytosolic 

calcium ion concentration stimulates release of PTH from both the 

newly synthesized and the older pool of PTH (Morrissey and Cohn, 

1979b). However, it now appears that low calcium concentration has 

little or no effect on release of the older storage granule pool of 

PTH (Hanley and Wellings, 1985). The second pathway is via changes in 

intracellular cAMP concentrations. Increased cAMP concentrations 

result in secretion of PTH from the older pool of PTH only (Morrissey 

and Cohn, 1979b). Two cAMP-dependent protein kinases have been 

identified within the parathyroid cells which are believed to play a 

role in PTH secretion (Lasker and Spiegel, 1982), but their exact 

function is unknown. 



www.manaraa.com

16 

Parathyroid hormone is released from the cell by exocytosis. 

Shortly after secretion of PTH, the secretory granule membranes are 

retrieved by endocytosis, presumably for recycling (Wild et al., 

1985). 

Factors Affecting PTH Secretion 

Calcium 

Extracellular fluid calcium ion concentration is the major 

regulator of PTH secretion. Hypercalcemia inhibits, while hypocal

cemia rapidly stimulates PTH release. Initially, it was felt that 

there was a linear relationship between PTH secretion and extracellu

lar calcium concentration (Sherwood et al., 1968). Subsequently, a 

sigmoidal relationship was shown to exist between PTH release and 

extracellular calcium concentration (Brown, 1983; Mayer and Hurst, 

1978). This relationship results from the fact that a certain degree 

of PTH secretion is nonsuppressible; i.e., no matter how high the 

extracellular calcium concentration, the chief cells continue to 

secrete a low basal level of PTH. Also, at some low calcium concen

tration, the chief cells are maximally stimulated. Further reduction 

in calcium does not result in increased secretion of PTH. - There also 

seem to be individual differences in the calcium set-point to which 

the glands respond. The set-point for a parathyroid gland is defined 

as the calcium concentration at which PTH secretion is 50% of maximal 

secretion. Often humans suffering from hyperparathyroidism do not 

have a neoplastic parathyroid, gland. Instead, recent research 
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indicates that these patients simply have parathyroid tissue with a 

higher set-point for calcium than normal. At a blood calcium concen

tration of 10 mg/dl, a normal parathyroid gland would only be secret

ing PTH at a rate slightly greater than the basal secretion rate. 

However, glands of a patient diagnosed with hyperparathyroidism will 

often secrete PTH at a rate well above the basal rate at this same 

calcium concentration (Brown, 1983; Insogna et al., 1985). 

Conversely, hypoparathyroidism may in some cases be due to parathyroid 

glands with a low set-point for calcium. 

Neonatal calf parathyroid tissues have a higher set-point for 

calcium than do parathyroids of adult cows (Brown, 1981; Keaton 

al., 1978). Calves also maintain higher plasma calcium concentrations 

than do adult cows (Goff £t , 1982). Heifers almost never develop 

severe hypocalcemia at calving despite the fact that some heifers 

produce more milk than older cows that do develop hypocalcemia and 

paresis. These facts raise the following questions concerning the 

pathogenesis of parturient paresis. Does the calcium set-point for 

PTH secretion decline continuously throughout the life of a cow? If 

so, does the decreased calcium set-point leave the older cow in a 

somewhat hypoparathyroid state? While the heifer may begin secreting 

PTH when her blood calcium concentration falls below 9 mg/dl, perhaps 

the older cow does not begin to secrete PTH until her plasma calcium 

concentration is below 8 mg/dl. This could cause a delay in activa

tion of those calcium homeostatic mechanisms necessary to prevent 

development of severe hypocalcemia. 
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Magnesium 

Magnesium and calcium are equipotent inhibitors of PTH secretion 

in vitro (Targovik et al., 1971). Although high levels of magnesium 

inhibit PTH secretion, a certain level of magnesium must be present to 

allow PTH secretion (Anast £t al., 1972; Buckle £t al., 1968). Al

though the effects of hypermagnesemia on PTH secretion are rarely of 

clinical importance, the effects of hypomagnesemia have been impli

cated in the development of several syndromes, including grass tetany 

of cattle. Grass tetany is a disorder in which clinical signs are 

associated with the rapid development of severe hypocalcemia following 

a prolonged period of hypomagnesemia. Littledike et al. (1983) 

observed inappropriately low PTH concentrations in the blood of cattle 

with grass tetany. They concluded that magnesium deficiency prevents 

PTH secretion which then leads to the development of hypocalcemia and 

clinical signs. 

Sodium and potassium 

•f» 
Parathyroid cells utilize Na /Ca exchange mechanisms to remove 

excessive numbers of calcium ions (Rothstein e^ £l., 1982). Low 

extracellular Na and Na /K -ATPase inhibitors (such as ouabain and 

monensin) impair operation of this system. As a result, calcium ions 

accumulate in the cytosol-inhibiting PTH secretion. High 

extracellular levels of may enhance PTH secretion by stimulating 

+ + 
the Na -K -ATPase pump. 
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Phosphate 

Phosphate was once thought to stimulate PTH secretion. Acute 

intravenous phosphate infusion results in a gradual increase in PTH 

secretion. However, phosphate infusion also causes a decrease in 

plasma calcium concentration, which is the true stimulus for PTH 

secretion since phosphorus infusion does not stimulate PTH secretion 

if normocalcemia is maintained by simultaneous infusion of calcium 

(Sherwood e^ al., 1968). Chronic hyperphosphatemia (as in renal 

failure) is also associated with high plasma PTH concentrations but, 

again, release of PTH is believed to be secondary to the hypocalcemia 

associated with hyperphosphatemia. 

The mechanism by which acute intravenous phosphate infusion 

causes hypocalcemia remains a subject of debate. Hebert et al. (1966) 

felt that the degree of hypocalcemia was proportional to the magnitude 

by which the solubility product for CaHPO^ was exceeded. Markedly 

elevated levels of phosphorus undoubtedly do cause precipitation of 

CaHPO^ salts on body surfaces (Carey al., 1968; Craig, 1959). 

There are other observations that do not support the solubility 

product hypothesis to explain the hypocalcemia associated with phos

phate infusion. Goldsmith and Ingbar (1966) infused phosphate into a 

patient with hypercalcemia due to malignancy (mammary carcinoma). 

Plasma calcium concentration decreased from 18 mg/dl to 8 mg/dl within 

4 days when infusion was ended. Plasma phosphate then rapidly re

turned to normal. However, calcium concentration did not begin to 

increase for another 11 days. If calcium had simply been deposited 
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extracellularly on body tissues, it should have returned into the 

plasma compartment once phosphate concentration had returned to 

normal. There are probably several mechanisms involved in the effect 

of phosphate on plasma calcium. First, the phosphate ion ties up some 

of the free calcium in the blood. The reduction in ionized calcium 

then stimulates PTH secretion. Reiss ̂  £l. (1970) found that total 

calcium, as well as ionized calcium, decreased during phosphate 

infusion. Other work Indicates that phosphate infusion stimulates 

bone formation by causing alterations In the concentration of calcium 

ion within bone-forming cells (Rasmussen, 1971) or through its re

ported regulatory role in mineralization (Gllmcher and Krane, 1968). 

There has been little recent work on this subject - despite the fact 

that phosphate is commonly employed to treat hypercalcemia of malig

nancy and hyperparathyroidism (Scolding, 1985). 

Chronic oral phosphate administration or hyperphosphatemia also 

results in hypocalcemia. The major mechanism is inhibition of renal 

25-hydroxycholecalciferol-la-hydroxylase (Gray £t al., 1977). The 

product of this enzyme, 1,25-dlhydroxyvltamln D, is vital to mainte

nance of normal plasma calcium concentration, primarily through its 

effects on intestinal calcium absorption. 

Factors that act through cAMP 

Epinephrine, dopamine. Isoproterenol, and other 6-2-adrenerglc 

agonists Increase PTH secretion through their activation of membrane-

bound adenylate cyclase (Blum et. al., 1980). Norepinephrine and 

a-adrenerglc agonists depress cAMP levels and PTH release (Brown et 
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al., 1978). Prostaglandin Eg and secretin also stimulate PTH release 

by activating adenylate cyclase, but this action is independent of 

adrenergic receptors (Habener, 1981a). Prostaglandin Fgct lowers 

adenylate cyclase activity and also activates cyclic nucleotide phos

phodiesterase to decrease cAMP concentration and reduce PTH secretion 

(Gardner, 1980). Theophylline and other phosphodiesterase inhibitors 

retard cAMP degradation and therefore enhance PTH secretion (Habener, 

1981a). 

Elevated cAMP concentrations stimulate release of PTH from the 

older stored pool of PTH. Because the size of this pool is small, 

cAMP-mediated release of PTH is transient and of short duration 

(Hanley and Wellings, 1985). High plasma calcium concentration can 

prevent activation of adenylate cyclase, but low calcium concentra

tions do not stimulate adenylate cyclase in the chief cells (Hanley 

and Wellings, 1985). High cytosolic calcium concentration leads to 

formation of calcium-calmodulin complexes that bind to and inhibit 

adenylate cyclase and also stimulate activity of phosphodiesterase 

(Peck and Klahr, 1975). 

The parathyroid glands are innervated by vagal and sympathetic 

fibers; however, their physiologic significance is unknown (Metz ejt 

al., 1978). Some species exhibit diurnal PTH secretory rhythms that 

may be controlled by these nerves (Fischer ̂  al., 1982). Setoguti et^ 

al. (1985b) have shown that vagal stimulation (parasympathetic) leads 

to increased conversion of Type I secretory granules to Type II 

secretory granules. 
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Miscellaneous factors 

In vitro studies of cultured parathyroid gland cells have shown 

that 1,25-dihydroxyvitamin D directly inhibits PTH secretion (Chertow 

e£ al., 1975). Cantley £t al. (1985) have indicated that 1,25-dihy

droxyvitamin D suppresses transcription of pre-pro-PTH mRNA in chief 

cells. Chan £t £l. (1986) have shown this effect is independent of an 

increase in extracellular calcium concentration. 

The inhibitory effects of 1,25-dihydroxyvitamin D on PTH secre

tion are not seen in hypocalcemic animals (Seshadri £t al., 1985). 

Dietel et (1979) found that 1,25-dihydroxyvitamin D also decreased 

cAMP production within chief cells, which also depresses PTH 

secretion. Since one of the functions of PTH is to stimulate renal 

production of 1,25-dihydroxyvitamin D, inhibition of PTH secretion by 

1,25-dihydroxyvitamin D may represent a negative feedback mechanism to 

control 1,25-dihydroxyvitamin D synthesis. Vitamin Dy and 

24,25-dihydroxyvitamin D3 had no inhibitory effects on PTH secretion 

(Dietel e£ al., 1979). 

Vitamin A (retinol) is capable of stimulating PTH secretion in 

vitro and in vivo (Chertow et al., 1977). Retinoic acid has no effect 

on PTH secretion. Chertow £t al. (1977) felt that vitamin A acts by 

altering the structure of the PTH secretory granule membrane facili

tating fusion of the secretory granule with the cell membrane. The 

membrane stabilizers, such as hydrocortisone and vitamin E, antagonize 

the effects of vitamin A on chief cells, supporting the theory that 

vitamin A acts on secretory granule membranes. Although the 
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hypercalcemia seen in vitamin A intoxicosis is primarily due to direct 

effects of vitamin A on bone resorption, it is possible that increased 

PTH secretion may also contribute. 

Physiologic Actions of PTH 

Effects on the kidney 

Parathyroid hormone has major physiologic effects on renal 

excretion of minerals and on renal conversion of vitamin D to a 

hormone. 

Phosphate excretion When PTH is administered to a parathy-

roidectomized rat, it results in rapid urinary excretion of phospho

rus. Normally, about 70-80% of filtered phosphate is reabsorbed in 

the proximal convoluted tubule, a small amount (< 5%) is absorbed in 

the loop of Henle, and the rest is excreted. During phosphorus 

deprivation, almost all the phosphate is reabsorbed (Martin, 1985). 

Parathyroidectomized animals excrete less phosphate than normal 

animals. Parathyroid hormone acts tonically on the kidney to maintain 

a basal level of phosphate excretion. Parathyroid hormone primarily 

inhibits proximal tubule reabsorption of phosphorus (Talmage and 

Kraintz, 1954). This process is mediated by cAMP generated as a 

result of PTH stimulation of adenylate cyclase (Chase and Aurbach, 

1968). The cAMP activates cytosolic and brush border protein kinase 

(Sacktor et al., 1977). Kinne and Schwartz (1978) postulate that 

stimulation of the protein kinase results in phosphorylation of a 

specific phosphate carrier protein which regulates the rate of uptake 
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of inorganic phosphate from the urinary space into the cell. Phos

phorylation results in inhibition of phosphate reabsorption. 

Kempson e£ al. (1981) found that NAD^ inhibits sodium-dependent 

uptake of phosphorus by tubule brush border membranes. They propose 

that PTH, acting via cAMP, stimulates gluconeogenesis which increases 

the NAD^/NADH ratio. The change in the ratio of NAD^/NADH inhibits 

phosphate reabsorption. The activity of alkaline phosphatase, a renal 

tubular brush border enzyme, is highly correlated with the rate of 

tubule phosphate reabsorption (Kempson et al., 1979). However, 

substances which block the activity of alkaline phosphatase do not 

impair renal reabsorption of phosphorus (Shirazi et al., 1981). 

Therefore, alkaline phosphatase probably plays no role in phosphate 

transport. 

The phosphaturic response to exogenous PTH is impaired in several 

conditions, including vitamin D deficiency (Forte e^ , 1976), 

metabolic acidosis (Beck £t £l., 1975), and phosphate deprivation 

(Steele al., 1976). The mechanism is unknown. It is known that, 

at least in phosphate deprivation, PTH continues to stimulate cAMP 

production (Bonjour and Fleisch, 1980). Bellorin-Font et al. (1985) 

present evidence that in metabolic acidosis the coupling of the 

components of adenylate cyclase is impaired. 

Calcium excretion About 56% of blood calcium is not bound to 

plasma proteins. This fraction is able to cross the glomerulus and 

enter the urinary space. Under normal conditions, 50-55% of the 

filtered load is reabsorbed within the proximal tubule, 30% in the 
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loop of Henle, and most of the remainder is reabsorbed in the more 

distal segments of the nephron. Usually less than 1% of the filtered 

calcium actually ends up in the urine (Sutton and Dirks, 1978). For a 

human this amounts to about 100 mg calcium per day. Parathyroidectomy 

leads to increased loss of calcium in the urine, even if plasma 

calcium is subnormal. Parathyroid hormone decreases urinary calcium 

loss primarily by increasing calcium reabsorption within the ascending 

sections of the cortical loops of Henle with lesser effects on the 

distal convoluted tubules. Parathyroid hormone has no effect on 

calcium reabsorption in the medullary ascending loops of Henle. In 

the proximal convoluted tubules, PTH actually decreases calcium 

reabsorption slightly (Bengele et al., 1980; Bourdeau and Burg, 1980). 

Calcium reabsorption from the proximal tubule is dependent on co-

transport of sodium. Na^-K*-ATPase Inhibitors block the reabsorption 

of both ions. More distally, the calcium reabsorptive mechanism is 

independent and separate from sodium transport (Goldberg e^ al., 

1976). The effects of PTH on calcium reabsorption are primarily 

mediated by cAMP. When dibutyryl cAMP, an analog of cAMP, is adminis

tered to dogs there is an increase in calcium reabsorption in the 

ascending limb of the loop of Henle and a decrease in calcium reab-

sorption in the proximal tubule (Sutton £l., 1976). 

Parathyroid hormone stimulates synthesis of acidic phospholipids 

within the renal cortex (Farese ̂  al., 1980). These acid phospho

lipids (phosphatidic acid and polyphosphoinositides) increase divalent 

cation partitioning into lipid phases (Green et al., 1980). An 
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increase in the amount of these acid phospholipids in brush border 

membrane vesicles results in an increase in calcium uptake (Humes et 

al., 1981), probably through their action as calcium ionophores within 

the renal tubule membrane. 

Magnesium excretion Administration of exogenous PTH extract 

to man results in renal conservation of magnesium. Parathyroid 

hormone has no effect on proximal tubule handling of magnesium. It 

does increase magnesium transport within the ascending limb of the 

loop of Henle (Shareghi and Agus, 1979). It is unclear whether the 

mechanisms for reabsorption of magnesium and calcium are separate or 

identical. 

Excretion of other substances Parathyroid hormone causes a 

decrease in the amount of bicarbonate ion reabsorbed within the 

proximal tubule (Arruda £t £l., 1977). This effect is not mediated by 

inhibition of carbonic anhydrase (Garg, 1975). Loss of bicarbonate 

contributes to the metabolic acidosis that is a common finding in 

hyperparathyroid people (Slatopolsky e£ al., 1981). 

Parathyroid hormone decreases proximal tubule reabsorption of 

sodium. However, little natriuresis is seen because most of the 

sodium is reabsorbed by more distal segments of the nephron (Wen, 

1974). In man, PTH increases the tubular maximum for glucose trans

port and increases amino acid excretion (Slatopolsky e^ £l., 1981). 

Renal production of 1,25-dihydroxyvitamin D Renal conversion 

of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D is accomplished by 

renal 25-hydroxycholecalciferol-la-hydroxylase. The activity of this 
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enzyme is closely regulated by PTH and/or plasma calcium 

concentration. Parathyroidectomy results in decreased production of 

1,25-dihydroxyvitamin D (Garabedian et al., 1972). 

Hyperparathyroidism generally results in excessive production of 

1,25-dihydroxyvitamin D (Broadus et al., 1983). Exogenous PTH 

stimulates 1,25-dihydroxyvitamin D production iji vitro (Garabedian et 

al., 1972; Kremer and Goltzman, 1982) and in vivo (Aksnes and Aarskog, 

1980). 

Formation and resorption of bone 

This section of the Literature Review is intended to present a 

brief overview of bone dynamics. Reviews by Jaworski (1984), Parfitt 

(1984), Raisz and Kream (1981), Recker (1983), and Rodan and Martin 

(1981) present current concepts on bone formation and remodeling in 

greater depth. 

In the young animal and in small mammals of short life span, bone 

is in a state of growth. Growth occurs through a process of modeling 

(sometimes referred to as external remodeling) in three areas of the 

bone: the physis, the periosteum, and the endosteum. When bone from 

a young animal is observed under the microscope, one finds that nearly 

all free bone surfaces are actively engaged in either bone formation 

or bone resorption (Parfitt, 1984). Growth in length of a bone is 

achieved through growth of a cartilagenous model within the physis. 

First, chondrocytes proliferate and differentiate, then begin to 

secrete cartilage matrix (Type II collagen). The cartilage cells 

undergo hypertrophy and the cartilage matrix becomes mineralized. 
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Blood vessels from the metaphysis invade the calcified cartilage, 

bringing in osteogenic cells which produce woven bone. The new woven 

bone is resorbed by osteoclasts and the woven bone is replaced by 

lamellar bone (Type I collagen) formed by osteoblasts. Increase in 

width of a long bone occurs by the removal of bone by osteoclasts on 

endosteal surfaces and formation of bone on periosteal surfaces by 

osteoblasts. 

In the adult stage of large long-lived animals, bone ceases 

growth in length and width. However, the bone tissue continues to be 

slowly resorbed and replaced by a process known as remodeling (inter

nal remodeling). This process is distinct from modeling. In remodel

ing, old bone is replaced by new bone; in modeling, new bone is added 

to the old bone in the growth process or as a reaction to mechanical 

stress, such as the increase in bone width that occurs with exercise. 

Modeling can lead to loss of bone from old surfaces in response to 

changes in mechanical stress also (such as disuse). 

As bone tissue ages, it becomes more mineral dense. It is more 

brittle than young bone and the calcium within the bone is bound more 

tightly to the collagen, making it less available to meet calcium 

homeostasis needs. Remodeling is a bone replacement mechanism which 

functions to prevent the accumulation of fatigue damage in the skele

ton and to maintain an adequate supply of young bone of relatively low 

mineral density to subserve mineral homeostasis. When adult bones are 

observed histologically, only about 20% of the trabecular (cancellous) 

bone surface and about 5% of .the Intracortical bone surface are active 
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with respect to bone remodeling (Parfitt, 1984). The next sections of 

this review will focus on the mechanisms of bone resorption and 

formation during the remodeling processes in trabecular and cortical 

bone. 

Cancellous bone" remodeling The normal sequence of events 

during remodeling begins with activation of a quiescent site on the 

trabecular surface of cancellous bone. In the quiescent stage, 

trabeculae are lined by endosteal lining cells. They probably are 

deactivated osteoblasts (Parfitt, 1984; Rodan and Martin, 1981). They 

differ from active osteoblasts in that they are flattened and appear 

to have lost their ability to synthesize collagen (Parfitt, 1984). 

Initiating remodeling requires the recruitment of osteoclasts, a means 

for them to gain access to the bone, and a mechanism for their attach

ment to the bone surface. The site chosen for bone remodeling seems 

to be random, although focal structural damage is also a likely 

initiator of remodeling. The events involved in activation of 

remodeling are not well understood. They will be discussed later in 

the review. 

Once the osteoclasts have made contact with the bone, they begin 

to erode a cavity within the bone. This cavity is known as a 

Howship's lacuna. Generally, the mean depth of the lacuna is 60 pm 

from the surface of the trabecula. The area covered by the lacuna 

seems to be dependent on the number of nuclei incorporated into the 

osteoclasts. In trabecular bone, osteoclasts rapidly erode the first 

two-thirds of the lacuna cavity. They then disperse (or die) and the 
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remainder of the cavity is eroded slowly by extracellular enzyme 

products left by the osteoclasts and by mononuclear cells that have 

followed the osteoclasts into the cavity (Ericksen £t al., 1983)• The 

mononuclear cells could be bone-resorbing monocytes or, more likely, 

they could be mononuclear osteoclast precursors that have failed to 

fuse with the osteoclast. 

How the depth of the lacuna is determined is unknown. Several 

possible controls have been postulated. The simplest explanation is 

that osteoclastic activity ceases when the nuclei within the 

osteoclast live out their life span and no new nuclei are recruited. 

However, recently prostacyclin has been shown to inhibit osteoclast 

motility and bone resorption (Parfitt, 1984). Osteoblasts have been 

implicated as cells that might produce prostacyclin to modulate 

osteoclast activity. 

While the osteoclasts are burrowing into the trabecular surface, 

the process of bone formation is beginning to fill in the space 

created by the osteoclasts. First, mononuclear cells (which may be 

pre-osteoclasts or pre-osteoblasts) clean up cellular debris left by 

the osteoclasts. They smooth the lacuna surface and then secrete a 

thin layer of highly mineralized, but collagen-poor, bone matrix 

(cement substance) which prepares the surface for bone formation. 

Osteoblast precursors then begin to multiply along the cement line. 

The stimulus for this division is unknown. Local bone growth factors, 

such as skeletal growth factor, are believed to play a role (Farley ̂  

al., 1982).. Plump, round osteoblasts eventually line the surface of 



www.manaraa.com

31 

the cement substance and begin to secrete collagen and the other 

components of bone matrix. If there is an adequate supply of calcium 

and phosphate present, mineralization of the matrix occurs once the 

matrix has matured. Details of the mineralization process are contro

versial and will not be discussed here. 

During active formation of bone, the osteoblasts are separated 

from the mineralized matrix by unmineralized matrix (osteoid). This 

osteoid seam eventually disappears as mineralization catches up with 

the osteoblast once the lacuna has been filled with osteoid. [In 

osteomalacia (adult rickets), much of the osteoid never is mineralized 

due to lack of calcium, phosphate, and/or vitamin D.] As the matrix 

surrounding the nonmotile osteoblast becomes mineralized, the osteo

blast is converted to an osteocyte. As bone formation proceeds, 

eventually the lacuna is entirely filled with bone. Once level with 

the original trabecular surface, the osteoblasts revert to a quiescent 

flattened form that lines the trabecular surface. Some authors refer 

to them as "lining cells" at this stage. Once again, they are inac

tive until bone remodeling is activated in that site. In the human, 

this occurs about every 7 years (Martin, 1985). The extent to which 

the lacunae are refilled is probably more highly dependent on the 

number of osteoblasts recruited into the area than on the biosynthetic 

activity of an individual osteoblast (Parfitt, 1984). Hormonal agents 

that regulate bone formation probably act more on osteoblast recruit

ment than on osteoblast function (Jaworski, 1984). This has 
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especially important implications for bone disease states such as 

osteoporosis. 

Cortical bone remodeling Lamellar cortical bone is found 

under the periosteum and articular surfaces of all bones. It is very 

dense and compact. In many respects, remodeling of lamellar bone is 

similar to remodeling of trabecular bone. Both require some 

activation factor that causes quiescent bone surface to become active. 

In both cases, old bone is attacked by osteoclasts and replaced by 

osteoblasts. The net result is replacement of old bone with new, more 

structurally sound bone in both areas. 

However, there are important differences. In trabecular bone, 

the endosteum is adjacent to the hematopoietic system which serves as 

a source of pre-osteoclasts and monocytes. To begin remodeling of 

periosteal or articular surfaces of lamellar bone, the pre-osteoclasts 

and monocytes must move to the activation site via the capillaries. 

Once at the site of remodeling, the osteoclastic precursors fuse into 

giant multinucleated osteoclasts and begin resorbing bone. This 

resorbing process is similar to that in trabecular bone except that on 

average the depth of the lacunae "drilled out" by the osteoclasts is 

deeper (100 um) and more cylindrical in shape. In lamellar bone, 

these lacunae outline the Haversian system that is easily recognized 

in histologic sections of bone. As the osteoclasts drill into the 

bone, bone-lining cells and mononuclear cells migrate into the lacuna 

along the bone just behind the osteoclasts, just as in trabecular 

bone. The mononuclear cells may play an important role in regulating 
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the osteoclastic activity as well. Mundy (1983) lists possible 

mechanisms by which the mononuclear cells may affect bone resorption. 

These include production of prostaglandin E^, osteoclast-activating 

factor (OAF), and interleukin I which act to stimulate bone 

resorption. In addition, the mononuclear cells may be precursors for 

the osteoclasts. 

As the bone-lining cells follow the osteoclasts, they lay down 

cement substance along the surface of the lacunae. Then some of them 

differentiate into osteoblasts which begin to secrete collagen and 

form bone at a right angle to the direction in which the osteoclasts 

have "drilled." The lacunae then is filled in from the outer wall 

towards the center (Jaworskl, 1984). An analogy is to think of 

drilling a hole into a piece of wood, then having the wood grow back 

into the hole from the new surface created by the drill toward the 

center of the hole. 

Hormonal control of bone resorption 

A number of hormones are known to stimulate calcium release from 

bone both ̂  vitro and Im vivo. These bone-resorbing hormones Include 

PTH, 1,25-dihydroxyvitamin D, and prostaglandins. One might expect 

that these substances would act directly on osteoclasts.to stimulate 

bone-resorbing activity. However, no one has been able to demonstrate 

receptors for PTH or 1,25-dihydroxyvitamin D in osteoclasts. Chambers 

et al. (1985) have found that the direct effect of prostaglandin is 

to actually decrease bone resorption by osteoclasts. 
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Parathyroid hormone and 1,25-dihydroxyvitainln D receptors have 

been demonstrated in osteoblast cells of bone (Rodan and Martin, 

1981). Activation of PTH receptors on osteoblasts results in stimula

tion of adenylate cyclase activity, resulting in a cAMP surge, rapid 

activation of cAMP-dependent protein kinase, inhibition of collagen 

synthesis, inhibition of alkaline phosphatase activity, stimulation of 

calcium uptake, and production of changes in cell shape of the osteo

blast. The osteoblastic response to 1,25-dihydroxyvitamin D is 

transcriptional inhibition of collagen synthesis and decreased alka

line phosphatase activity. In addition, 1,25-dihydroxyvitamin D can 

inhibit the replication of bone cells under some conditions (Raisz, 

1984). 

It is difficult to understand how these hormones act. In the 

case of 1,25-dihydroxyvitamin D, it is well documented that it is 

necessary for normal bone growth, yet it inhibits bone collagen 

synthesis ̂  vitro. Raisz (1984) attempts to reconcile these incon

gruities. He feels that 1,25-dihydroxyvitamin D acts as a bone growth 

factor only at low concentrations, when calcium and phosphorus are 

abundant. Under these circumstances, it permits growth. When calcium 

and phosphate are in short supply, the synthesis of 1,25-dihydroxy

vitamin D increases greatly, blocking osteoblast synthesis of bone 

collagen - which probably could not calcify properly until blood 

calcium and phosphate had returned to normal anyway. 

Rodan and Martin (1981) proposed the following hypothesis to 

explain how hormones that act directly on osteoblasts can stimulate 
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bone resorption by osteoclasts. According to this hypothesis, in 

quiescent bone inactive osteoclasts are separated from the bone by a 

contiguous layer of inactive osteoblasts. These osteoblasts are 

flattened and completely cover the surface of the bone. Rone-

resorbing hormonal agents, such as PTH and some prostaglandins, induce 

(via cAMP or calcium flux) a shape change in the osteoblasts. As the 

osteoblasts retract, the matrix beneath them is uncovered, exposing it 

to osteoclasts or osteoclast projections. The idle osteoclast is 

stimulated to begin resorbing bone simply by exposure to bone matrix. 

The resulting matrix digestion further enhances resorption by releas

ing collagen and osteocalcin locally which attracts monocytic osteo

clast precursors and idle osteoclasts to the site. A second aspect is 

the direct activation of osteoclasts by products of hormone action on 

osteoblasts. Osteoblasts may produce osteocalcin or prostaglandins 

that contribute to the activation of the osteoclasts. Activity of the 

osteoclasts ceases when the osteoblasts are no longer stimulated by 

the bone-resorbing hormones or by the direct action of calcitonin on 

the osteoclasts. Calcitonin receptors have been demonstrated on 

osteoclasts and their activation increases adenylate cyclase activity 

within the osteoclasts and decreases bone resorption mechanisms. 

Although many aspects of this hypothesis remain to be tested, it does 

seem to be the best hypothesis based on the information at hand. 
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SECTION I. 

BONE RESORPTION, RENAL FUNCTION, AND MINERAL 

WITH 1,25-DIHYDROXYCHOLECALCIFEROL AND ITS 

STATUS IN COWS TREATED 

24-FLUORO ANALOGUES 
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INTRODUCTION 

Parturient paresis is a syndrome seen in dairy cows that develop 

severe hypocalcemia at the onset of lactation. Nonparetic cows meet 

the periparturient calcium demand by adequately increasing the amount 

of calcium entering the blood from the diet and from bone. Paretic 

cows do not. Both groups of cows respond to the calcium drain with 

increased parathyroid hormone (PTH) (Mayer et al., 1969) and 1,25-dl-

hydroxyvitamin D3 [1,25-COH)2D3.] (Horst et al., 1978). However, in 

the paretic cows this homeostatic response does not activate bone 

resorptive and intestinal calcium absorption mechanisms in time to 

meet the lactational drain of calcium, possibly because of delayed 

target organ responsiveness. To effectively prevent parturient 

paresis, bone resorption and intestinal absorption of calcium and 

inorganic phosphorus should be stimulated before "paresis-prone" cows 

become hypocalcemic. This can be done by feeding low calcium diets 

prior to parturition (Goings e_t a]L., 1974; Green £t £l., 1981), but 

the management required to maintain cows on these diets has proven 

impractical for many producers. 

The use of the vitamin D family of compounds in the prophylaxis 

of parturient paresis has been of interest for some time. The prophy

lactic regimes using the parent compound, vitamin D, require the use 

of near-toxic doses of vitamin D (10-20 x 10^ lU), and are only 

effective when given within a precise time period prior to parturition 

(Hibbs and Pounden, 1955; Julien et al., 1977; Littledlke and Horst, 
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1982; Manston and Payne, 1964). When relatively nontoxic doses of 

vitamin D are used (2.5-5 x 10^ lU), they are found to be ineffective 

and actually increase the incidence and severity of milk fever 

(Littledike and Horst, 1979). The elucidation of the vitamin D 

endocrine system and the availability of potent vitamin D metabolites 

renewed the search for an agent capable of preventing parturient 

paresis. 25-Hydroxycholecalciferol (Jorgensen e^ al., 1978; Olson et 

al., 1972), la-OHDg (Barlet, 1977; Sachs et al., 1977; Sansom et al., 

1976; Wittwer and Ford, 1978), and 1,25-(0H)2D3 (Cast £t al., 1979; 

Hoffsis et. » 1978) have been used with some success. These 

compounds have the advantage of a shorter biological life than vitamin 

D; therefore, toxicity problems are reduced. However, the shorter 

biological life also requires a more accurate prediction of the time 

of parturition for full effectiveness. A synthetic vitamin D 

metabolite with a longer biologic activity than 1,25-(0H)2D3 could 

better accommodate inaccuracies in predicting the time of parturition, 

while compromising only slightly on possible toxicities. 

Several workers have shown that 24,24-F2-l,25-(0H)2D3 has greater 

biologic activity than 1,25-(0H)2D3 in rats (Okamoto £t al., 1983) and 

chicks (Corradino e£ al., 1980). The biologic activity of 24-F-

1,25-(0H)2D3 has not been determined for any species, but, based on 

its similarity to 24,24-F2-l,25-(0H)2D3 it might also be expected to 

be more potent than 1,25-(0H)2D3. The present report demonstrates the 

relative potencies of 1,25-(0H)2D3, 24-F-l,25-(0H)2D3, and 24,24-F2-

1,25-(0H)2D3 in nonlactating, nonpregnant adult dairy cows by 
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comparing the effects on plasma mineral concentrations, bone resorp

tion, and renal excretion of calcium and phosphorus. In addition, we 

present evidence that renal function is impaired following administra

tion of these compounds. 
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MATERIALS AND METHODS 

Vitamin D Compounds 

The 1,25-(0H)2D3, 24-F-1,25-(0H)jOg, and 24,24-F2-l,25-(0H)2D3 

were supplied from Hoffmann-La Roche, Inc., Nutley, NJ. 

Animals 

Mature (> 3 years of age) nonlactating, nonpregnant Jersey cows 

that had been fed the experimental diet for at least 1 month were used 

in these experiments. Animals were housed indoors in individual 

stanchions during the trials. 

Diet 

Each cow was fed 10 kg of a diet composed of 50% alfalfa hay 

cubes and 50% beet pulp-based commercial supplement (Sweet and Bulky, 

Wayne Feeds Division, Continental Grain, Chicago, IL) per day. The 

calculated daily intake of minerals (calcium, 75 g; phosphorus, 40 g; 

magnesium, 25 g) was well above the NRC requirement (National Research 

Council, 1978). 

Design 

Treatment trials were run for each of the 3 compounds [24-F-

1,25-(0H)2D3, 24,24-F2-I,25-(OH)2D3, and 1,25-(0H)2D3] at the follow

ing three doses; 25 yg, 100 ug, 400 yg, thus resulting in 9 treatment 

groups. In addition, a tenth group of cows received drug vehicle only 

(ethanol). Each treatment group consisted of 3 cows. 
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Protocol 

A Foley catheter was placed into the bladder of each cow, and 

urine collections were begun 24 hours later. Urine was collected into 

vessels containing 100 ml glacial acetic acid which brought the pH 

between 4 and 5. Daily blood and total urine collections were made 

for the next 4 days to obtain baseline physiologic data for each 

individual cow during this pretreatment period. Plasma and urine 

samples were kept frozen at -19°C until analyzed. 

At the start of day 5, a specific dose (calibrated by ultraviolet 

absorption, = 264 nm, Z = 18,200) of one of the three compounds 

dissolved in 1 ml of ethanol was administered intramuscularly. Daily 

blood and total urine collections were then continued over a 9-day 

posttreatment period to determine the influence of drug treatment on 

various physiologic parameters. 

Physiologic Parameters Monitored 

Daily concentrations of calcium and magnesium in plasma and urine 

were determined for each cow by atomic absorption spectrophotometry 

(Perkin-Elmer Corp., 1965). Plasma and urine inorganic phosphorus 

concentrations were determined colorimetrically (Fiske and Subbarrow, 

1925). 

Concentrations of hydroxyproline in plasma and urine were moni

tored daily as an estimate of bone resorption activity (Dull and 

Henneman, 1963). Free plasma hydroxyproline and total urinary 
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hydroxyproline were determined colorlmetrically (Bannister and Burns, 

1970; Kiviriko et,±1-» 1967). Renal function was assessed by monitor

ing urine specific gravity and renal glomerular filtration rate (GFR). 

Glomerular filtration rate was estimated by determining endogenous 

creatinine clearance rates. Plasma and urine creatinine concentra

tions were determined colorimetrically on an AutoAnalyzer (Chasson £t 

al., 1961). 

The hydration state of the animals was estimated by measuring 

total plasma protein using a refractometer (American Optical Company, 

Buffalo, NY). In addition, plasma glucose and g-hydroxybutyrate 

concentrations were measured by colorimetrlc assays (Trinder, 1969; 

Zivin and Snarr, 1973) to give some indication of the metabolic state 

of the animals throughout the experiment. 

Analysis 

Pretreatment (baseline) and posttreatment samples were obtained. 

The 9 days after treatment were divided into four 2-day periods and a 

single 1-day period to more accurately assess the duration and inten

sity of the drugs' effects. For each physiologic parameter, the 

effect of the drug was expressed as a percentage of the baseline value 

obtained during the pretreatment period, allowing each cow to act as 

its own control. The means of each group of treated cows were sub

jected to ̂ -tests (LSD) (Barr et , 1976), comparing them to the 

means obtained from the ethanol-treated cows. 
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RESULTS 

All three compounds effectively elevated plasma calcium and 

inorganic phosphorus concentrations at the 100 and 400 pg doses 

(Tables 1 and 2). The 24,24-F2-l,25-(0H)2D3 compound was approxi

mately 4 times as effective as 1,25-(0H)2D3 in elevating plasma 

calcium and inorganic phosphorus concentrations based on the observa

tion that 100 pg of 24,24-F2-1,25-(0H)2D3 and 400 ug of 1,25-(0H)2D3 

resulted in similar plasma calcium and inorganic phosphorus concentra

tions. The 24-F-l,25-(0H)2D3 compound appears to be only slightly 

more effective than 1,25-(0H)2D3 in elevating plasma calcium and 

inorganic phosphorus concentrations. At the 400 yg dose, both the 

fluorinated compounds induced significantly elevated plasma calcium 

concentrations for a longer period of time than did 1,25-(0H)2D3 (Fig. 

1). Administration of any one of the three compounds resulted in 

similar decreases in plasma magnesium concentration. 

Plasma hydroxyproline concentrations were not significantly 

affected by 25 yg or 100 yg of any of the compounds. At the 400 yg 

dose, the 24-F-l,25-(OH)2D3 compound significantly depressed plasma 

hydroxyproline concentration when compared to the effects of ethanol. 

The 400 yg dose of 1,25-(0H)2D3 and 24,24-F2-l,25-(0H)2D3 had no 

significant effect on plasma hydroxyproline concentration. Urinary 

hydroxyproline excretion rate exhibited the same pattern as plasma 

hydroxyproline concentration (Table 3), except that hydroxyproline 
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excretion via the urine was depressed significantly following the 400 

Ug dose of all three compounds. 

Total plasma protein, plasma glucose, and plasma B-hydroxy-

butyrate were not significantly affected by treatment with any of the 

compounds. 

Urine specific gravity was reduced following administration of 

any of the compounds. Isosthenuria (Sp. gr. S 1.012 and > 1.008) was 

seen in most cases, although several of the cows that received 400 yg 

of 24,24-F2-1,25-(0H)2D3 or 1,25-(0H)2D3 were hyposthenuric (Sp. gr. 

5 1.008) for several days. 

The GFR was significantly reduced by all three compounds at the 

400 yg dose and in cows that received 100 ug of 24,24-F2-l,25-(0H)2D3 

(Table 4)• The depression of GFR induced by 400 yg of the fluorinated 

compounds persisted longer than the depression in GFR induced by 400 

Ug of l,25-(OH)2D3• The GFR of the cows was determined again 1 month 

after the end of the experimental period and had returned to pretreat-

ment levels in all cases. 

Urinary calcium excretion rates (Table 5) exhibited a consider

able degree of variation, as shown in the control cows. There was 

generally an increase in urinary calcium excretion after treatment 

with 25 or 100 ug of the drugs. However, urinary calcium excretion 

rates at the 400 yg dose were less than those seen at the 100 yg dose 

for all three drugs. In addition, the 400 yg doses of 1,25-(0H)2D3 

and 24,24-F2-l,25-(0H)2D3 were associated with lower urinary calcium 

excretion rate than those determined in.the pretreatment periods. 
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Urinary phosphorus excretion rates were also generally increased 

by treatment with any of the compounds. There was considerable 

variation among the cows, which made statistical inferences difficult. 

Assuming that 56% of plasma calcium and all plasma phosphorus is 

filterable across the renal glomeruli, the resting renal tubular 

reabsorption rates (TR) for calcium and phosphorus were estimated 

using the following formulae: 

TR (Ca) = (GFR x [plasma Ca x 0.56]) - (urine vol. x [urine Ca]) 

TR (P) = (GFR x [plasma P]) - (urine vol. x [urine P]). 

Reabsorption of calcium by the renal tubules ranged between 95 and 98% 

efficient. No significant difference was found in renal tubular 

reabsorption rate for calcium or phosphorus after administration of 

any of the compounds studied^ 
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DISCUSSION 

The addition of fluorine to the 24-carbon of the side-chain 

increases the duration and intensity of the hypercalcemic and hyper

phosphatemia activity of 1,25-(0H)2D3. We found the 24,24-F2-l,25-

(OHOzDs compound to be approximately 4 times as active as 1,25-

(0H)2D3, while the 24-F-l,25-(0H)2D3 compound was intermediate in its 

ability to raise plasma calcium concentrations. Okamoto et al. (1983) 

and Corradino et. fJL" (1980) reported similar findings in experiments 

with 24,24-F2-1,25-(0H)2D3 in rats and chicks. 

Urinary hydroxyproline excretion has been utilized as a sensitive 

index of bone resorptive activity in cattle (Black and Capen, 1971). 

Hoffsis ejt (1978) reported that 600-ug injections of 1,25-(0H)2D3 

to dairy cows caused significant increases in urinary hydroxyproline 

excretion when expressed as a ratio to urinary creatinine. However, 

we could not demonstrate any increase in total urinary hydroxyproline 

excretion with 1,25-(0H)2D3 or the fluorinated analogues. We found 

that the higher doses of the compounds tested actually inhibited 

urinary hydroxyproline excretion. 

The discrepancy in results may reflect the manner in which the 

data was presented. However, we have demonstrated that high doses "of 

any of the compounds tested are capable of dramatically decreasing 

GFR, so urinary hydroxyproline excretion may not be the best indicator 

of bone matrix catabolism in animals with compromised renal function. 
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Plasma hydroxyproline concentration is also a useful indicator of 

bone resorption, activity and is less likely to be affected by reduced 

renal function than urinary hydroxyproline excretion rates. Although 

reduced GFR might result in higher plasma hydroxyproline, we measured 

plasma hydroxyproline concentrations and found no significant change 

with any of the compounds tested. Likewise, Hove al. (1983) and 

Bar £t £l. (1985) found that administration of la-OHDg, 1,25-(OH)2D3, 

1,24,25-(0H)3D3, and 1,25,26-(0H)3D3 to mature cows either had no 

effect or caused a slight reduction in plasma hydroxyproline concen

tration. Therefore, bone calcium resorption probably has little or no 

role in the hypercalcemia activity observed when pharmacologic doses 

of cholecalciferol compounds are administered to normocalcemic cows. 

The compounds tested induced acute transient changes in renal 

function manifested by an inability to concentrate the urine and a 

reduction in GFR. The hypercalcemia activity of the three compounds 

may be responsible for the observed rena] Insufficiencies. Hypercal

cemia has long been known to alter the ability of the kidneys to 

concentrate the urine (Lee e_t ^1., 1978; Osborne and Stevens, 1977; 

Schwartz and Relman, 1967). Mechanisms proposed include a blockade of 

the activity of anti-diuretic hormone at the level of the collecting 

ducts (Manitins et al., 1960) or a defect in sodium transport in the 

loop of Henle (Epstein £t £l., 1959). 

Hypercalcemia has also been observed to result in a reduction of 

GFR. There are believed to be two mechanisms at work. Hypercalcemia 

can result in calcification of renal tubules and loss of functional 
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nephron mass (Capen al., 1966; Ganote ££ , 1975). The loss of 

these nephrons is presumably permanent. Hypercalcemia has also been 

shown to cause significant alterations in renal hemodynamics. Calcium 

ions potentiate the vasoconstrictive activity of angiotensin II on 

renal afferent arterioles, thus reducing renal blood flow and GFR 

(Levi £it £l., 1983) . This effect is reversible once normocalcemia is 

established. 

Vitamin D sterols have also been incriminated as the direct cause 

of reduced renal function. Dinkel (1966) showed that nephrocalcinosis 

could be caused by dihydrotachysterol administration despite the 

presence of hypocalcemia. Morrissey £t al. (1977) found renal calci

fication occurred in chicks fed varying amounts of 25-OHD at dose 

levels lower than those required to induce hypercalcemia. Hartenbower 

£t £l. (1977) suggested that 1,25-(0H)2D3 has a specific toxic effect 

on the kidney since the pattern of calcification of the kidney in rats 

following 1,25-(0H)2D3 intoxication differs from that occurring in 

vitamin D toxicity. 

We could not discern the extent of any direct contribution that 

the compounds tested had on reduction of GFR. However, we have shown 

that the fluorinated compounds produced greater changes in GFR than 

did 1,25-(0H)2D2 at the same doses. 

Initially, the compounds induced hypercalcemia and hypercal-

ciuria. However, as the degree of renal insufficiency increased the 

amount of calcium excreted in the urine decreased, despite greater 

plasma loads of calcium. Therefore, the inability to excrete calcium 
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in the urine appropriate to the plasma load of calcium actually adds 

to the hypercalcemia. Hoffsis £it al. (1978) reported that urinary 

calcium excretion rates of cows were increased by administration of 

1,25-(OH)2D3, but that the changes in urine calcium did not correlate 

directly with the intravenous dose of steroid. Cows in their experi

ment may have had compromised renal function at the high doses of 

1,25-(OH)2D3, accounting for the lack of a direct correlation between 

urinary calcium excretion and steroid dose. Kopple and Coburn (1973) 

noted that even mild to moderate renal insufficiency can be associated 

with lower than normal urinary calcium excretion. 

Vitamin D compounds can induce hypercalcemia and hyperphospha

temia by increasing intestinal calcium and phosphorus absorption, 

increasing bone resorption, or by decreasing the loss of calcium and 

phosphorus via the urine. In this experimental model, the compounds 

tested did not act by stimulating bone resorption or by inducing renal 

conservation of calcium and phosphorus over control animals. The 

hypercalcemia and hyperphosphatemia caused by the compounds tested are 

probably the result of stimulation of active transport mechanisms for 

calcium and phosphorus within the intestinal tract (Braithwaite, 1980; 

Hove, 1984). 

The 24-F-1,25-(0H)2D3 and 24,24-F2-l>25-(OH)2D3 compounds have 

equal or greater biopotency than 1,25-(0H)2D3 in all physiologic 

parameters we measured. Okamoto ejt al. (1983) suggest that fluorine 

atoms on the 24-carbon block hydroxylation which may be necessary for 

inactivation of the compound, thus prolonging the biological activity. 
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In this study, we have found that the prophylactic activity of 

the compounds tested would reside mainly in their ability to markedly 

increase intestinal calcium and phosphorus absorption. Further 

studies must capitalize on this beneficial effect while minimizing the 

potentially harmful effects of these compounds which include reduced 

renal function and inhibition of bone resorption activity. 
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14-, O 1,25 VIT 0) 

• MONOFLOURO 

^ DIFLDURO 

PRE-TREAT. PERIOD 
BASELINE 

PERIOD 2 PERIOD 3 PERIOD 4 PERIOD 5 

Figure 1. Plasma calcium concentrations following a 400-yg dose of 
either 1,25—(OH)zDa» 24-F-l,25-(OH)2D3 ov 24,2A-F2-I>25-
(0H)2D3. Mean ± SEM. *Denotes significantly increased 
plasma calcium concentration above baseline. Period 1 = 
days 1 and 2; Period 2 = days 3 and 4; Period 3 = days 5 
and 6; Period 4 = days 7 and 8; Period 5 = day 9 
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Table 1. Plasma calcium concentration during the 5 posttrpatment periods 
expressed as a percentage of pretreatment calcium concentration 

% of Pretreatment Level^ 
Period 1 Period 2 Period 3 Period 4 Period 5 

Treatment (Days 1&2) (Days 3&4) (Days 5&6) (Days 7&8) (Day 9) 

Ethanol 

Control 101.1 
(9.55 ± 0.13) ± 2.0 

24-F-l,25-(0H)2D3 

102.4 
±  0 . 8  

99.6 
± 0,6 

101.1 
+  ]  . 1  

98.8 
± 1.4 

25 Jig 103.4 
(9.24 ± 0.23) ± 2.6 

100 pg 107.4 
(8.36 ± 0.13) ± 1.4 

109.1 
±  0 . 8  

113.2^ 
± 2.5 

101.4 
± 1.5 

110.2' 
± 1.6 

106.2 
± 1.1 

109.7* 
± 1.0 

ND 

ND 

400 Jig 124.3 124.0 123.0 120.4 1 1 7  R  
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400 pg 124.3 124.0 123.0 120.4 117.8 
(8.68 ± 0.23) ± 5.9 ± 4.4 ± 3.6 ± 4.5 ± 4.6 

24,24—F 2~1» 25— (0H)2D3 

25 ug 
* 

111.3 
•k 

110.9 106.5* 104.4 ND 
(9.29 ± 0.14) ± 3.6 ± 4.4 ± 5.4 ± 3.4 

100 yg 119.9*^ 
* 

117.] 
* 

115.1 
* 

112.8 111.9 
(8.91 ± 0.24) ± 1.9 ± 2.5 ± 4.7 ± 3.2 ± 6.6 

400 wg 
* 

129.3 139.9 ^ 131.1*^ 126.8*^ 122.0 ^ 
(9.38 ± 0.25) ± 4.7 ± 3.7 ±5.2 ± 7.3 ± 6.2 

1,25-(0H)2D3 

25 ug 106.0 
* 

109.3 105.8 104.5 103.3 
(8.58 ± 0.13) ± 2.4 ± 2.0 ± 2.2 ± 1.1 ± 1.1 

100 ug 
* 

111.9 
ft 

115.8 
* 

111 .4 
* 

109.2 107.7 
(9.01 ± 0.03) ± 1.0 ± 1.4 ± 0.9 + 0.9 ± 1.0 

400 ug 
* 

122.3 
* 

119.4 111.4 110.3 105.5 
(9.50 ± 0.26) ± 3.1 ± 4.2 ± 7.0 ± 4.5 ± 3.1 

^Values in parentheses are the prntreatment baseline concentration of 

calcium In mg/100 ml. Pretreatment data are reported as the mean ± SEM. ND = 

Not determined. Significantly different (P S 0.05) from control (ethanol) 

values. ^Significantly different (P < 0.05) from 1,25-(0H)2D3 values at same 

dose. 
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Table 2. Plasma phosphorus concentration during the 5 posttreatment periods 
expressed as a percentage of pretreatment phosphorus concentration 

% of Pretreatment Level^ 
Period 1 Period 2 Period 3 Period 4 Period 5 

Treatment (Days 1&2) (Days 3&4) (Days 5&6) (Days 7&8) (Day 9) 

Ethanol 

Control 109.3 
(5.83 ± 0.14) ± 5.2 

100.4 
± 9.2 

88.9 
± 9.1 

100.0 
± 5.5 

105.1 
± 1.5 

24-F-1,25-(0H) 2 D 3  

25 yg 115.7 
(5.65 ± 0.21) ± 8.7 

117.4 
± 5.2 

111.6 
± 7.5 

123.1 
± 9.8 

ND 

100 pg 110.2 
(5.62 ± 0.45) t 9.7 

134.0 
±11.4 

123.8 
± 4.9 

116.0 
±10.7 

ND 

400 pg 140.2 
(5.82 ± 0.69) ± 6.8 

157.5 
±14.3 

155.1 
±16.8 

160.4 
± 1 6 . 4  

150.0 
±29.9 

24,24-F2-l,25-r0H)jD3 



www.manaraa.com

24,24- F 2-l,25-(0H)2D3 

25 yg 117.2 116.3 
* 

116.4 
A 

126.2 ND 
(7.12 ± 0.26) ± 2.2 ± 5.8 ± 8.0 + 2.3 

100 yg 136.5*^ 
* 

]31.6 135.2 
* 

133.8 136.7 
(6.42 ± 0.33) ± 2.1 ±10.6 ±15.3 ± 9.5 ±10.2 

400 yg 144.9 
* 

153.5 145.6* 
* 

134.7 150.1 
(5.37 ± 0.68) ±11.7 ±23.6 ± 9.7 ±21.8 ±22.7 

1,25-(OH)2D3 

25 yg 105.3 107.9 112.0 116.3 109.7 

(6.24 ± 0.52) ± 3.4 ± 9.2 ± 5.1 ± 9.3 ± 6.4 

100 yg 116.0 128.2 
* 

133.7 
* 

139.1 129.3 

(6.45 ± 0.23) ± 4.8 ± 6.7 ± 4.0 ± 6.1 ±13.8 

400 yg 142.7 129.2 126.7 118.9 131.4 

(6.21 ± 0.58) ±17.5 ±11.7 ±12.4 ±10.3 ± 7.4 

^Values in parentheses are the protreatment baseline phosphorus 

concentrations in mg/100 ml. Pretreatment data are reported as the mean ± SEM. 

ND = Not determined. Significantly different (P £ 0.05) from control 

(ethanol) values. ^Significantly different (P è 0.05) from 1,25-(0H)2D3 

values at same dose. 
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Table 3. Urinary hydroxyproline excretion rate during the 5 posttreatment 
period expressed as a percentage of pretreatment urinary hydroxy-
proline excretion rate 

% of Pretreatment Level^ 
Period 1 Period 2 Period 3 Period 4 Period 5 

Treatment (Days 1&2) (Days 3&4) (Days 5&6) (Days 7&8) (Day 9) 

Ethanol 

Control 90.7 97.3 119.7 113.1 332.7 
(11.3 ± 1.2) ±13.5 ±14.1 ± 9.8 ± 4.3 ±14.8 

24-F-l,25-(OH) 2D3 

25 ug 136.2* 109.3 113.5 94.1 ND 
(13.3 ± 2.8) ± 7.4 ±16.2 ± 1.8 ±19.8 

100 pg 154.8 136.0 132.5 138.0 ND 
(13.2 ± 3.1) ±38.5 ±20.3 ±11.3 ±16.6 

400 ug 104.2 91.7 
* 

68.3 60.8 ^ 45.5* 
(17.6 ± 2.3) ± 4.5 ±4.7 ± 6.5 ± 3.4 ±24.9 

2/ i ,24-F2-1 ,25-(0H)2D3 
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24.24-F2-1.25-(0H)2D3 

25ug 
(15.8  ± 1 ,3)  

100 ug 
(12.9  ± 0 .6)  

400 ug 
(16 .0  ±  0 .2 )  

1,25-(0H)2D3 

25 ug 
(19.3  ± 3 .0)  

113.6  
± 8 .7  

114.9  
±17.2  

110.0 
± 8 .5  

106.3  
± 5 .7  

88 .1  
± 9.3 

87.5 
±16.1 

78.5 
±  8 . 8  

107.5 
± 4.6 

84.5 
±11.7 

78.2 
±21.5 

70.6" 
± 7.6 

95.2  
± 1 .7  

79.4  
±  8 . 0  

6 8 . 6  
± 4 .0  

67.1  
±  6 . 1  

99.9 
±11.5 

ND 

55.7  
± 7 .5  

73.1  
± 8 .9  

98.5 
± 9.9 

100 ug 
(14.6  ± 1 .2)  

400 ug 
(15.4  ± 3 .4)  

138.2  
± 9 .1  

105.0  
±18.9  

102.0 
± 1.9 

87.1 
±18.5 

99.3 
± 5.7 

i 
75.6 

±12.0 

89.6  
±13.0  

i 
91.6  

±10.3  

100.9 
± 9.3 

ND 

^Values in parentheses are the pretreatment baseline urinary hydroxypro-

line excretion rates in mg/min. I'retreatmert data are reported as the mean ± 
* 

SEM. ND = Not determined. Significantly different (P Ê 0.05) from control 

(ethanol) values. ^Significantly different (P s 0.05) from 1,25-(0H)2D3 

values at same dose. 
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Table 4. Glomerular filtration rate during tlie 5 posttreatment periods 
expressed as a percentage of pretreatment glomerular filtration rate 

Treatment 

Ethanol 

Period 1 
(Days 1&2) 

% of Pretreatment Level^ 
Period 2 
(Days 3&4) 

Period 3 
(Days 5&6) 

Period 4 Period 5 
(Days 7&8) (Day 9) 

Control 91.7 
(922 ± 108) ±9.1 

24-F-l,25-(0H)zD3 

25 ug 113.9 
(651 ± 136) ± 7.5 

100 yg 127.2 
(693 ± 96) ±14.2 

89.5 
±10.8 

86.4 
± 0.6 

109.1 
±23.6 

106.8 
± 6.1 

93.5 
± 1.7 

114.2 
± 2 0 . 6  

103.5 
± 4.1 

84.6 
± 4.8 

123.4 
±24.6 

101.4 
± 7.0 

ND 

ND 

400 t ig  
/OSS + 

87.4  
4- 7 q 

81.9  
+ 7 

68.4 
+ 

64.2  
± 2 . 3  

61.5  
± 1 .3  
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400 ug 
(955 ± 125) 

87.4 
± 7.5 

Hi.y 
± 7.6 

OO . H 

±  2 . 6  ± 2.3 ± 1.3 

24,24-F2-l,25-(0H)2D3 

25 pg 
(1091 ± 91) 

100 Ug 
(794 ± 129) 

400 ijg 
(899 ± 83) 

1.25-(0H)2D3 

25 wg 
(819 ± 58) 

100 ug 
(758 ± 13) 

400 iig 
(916 ± 65) 

8 9 . 6  
± 4.1 

107.5 
±14.9 

84.2 
± 3.5 

105.6 
± 3.9 

110.9 
± 6.3 

104.6 
±28.3 

94.8 
± 4.0 

92.4 
±3.1 

69.3 
± 4.8 

102.9 
±  1 . 2  

99.1 
±  0 . 8  

83.9 
± 9.7 

90.4 
± 7.1 

8 8 . 6  
±5.1 

d 
6 2 . 6  
± 4.6 

105.7 
±12.7 

94.4 
± 4.1 

69.7' 
±12.5 

88.9 
±  8 . 6  

67.8^ 
± 2.7 

63.8^ 
±10.3 

97.2 
± 3.4 

89.4 
±  6 . 6  

96.4 
±12.9 

MD 

60.5 
± 7.1 

57.9/ 
± 9.3 

* 

103.0 
±  2 . 6  

97.7 
± 5.8 

ND 

^Vnlues In parentheses are the pretreatment baseline glomerular filtra

tion rate in ml/min. Pretreatment data are reported as the mean.± SEH. ND = 
* 

Not determined. Significantly different (P < 0.05) from control (ethanol) 

values. 
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Table 5. Urinary calcium excretion rate during the 5 posttreatment periods 
expressed as a percentage of pretreatment urinary calcium excretion 
rate 

% of Pretreatment Level^ 
Period 1 Period 2 Period 3 Period 4 Period 5 

Treatment (Days 1&2) (Days 3&4) (Days 5&6) (Days 7&8) (Day 9) 

Ethanol 

Control 111.0 
(0.87 ± 0.43) ±23.0 

132.2 
±44.6 

368.0 
± 2 6 . 6  

129.5 
± 5.5 

84.0 
±19,7 

24-F-1,25-(0H)2D3 

25 lig 137.6 
(0.52 ± 0.22) ±76.7 

182.3 
±72.3 

315.9 
±42.8 

260.4 
±38.7 

ND 

100 ug 977.0 
(0.99 ± 0.52) ±800.6 

546.3 
±291.8 

817.8 
±509.2 

685.4 
±389.5 

ND 

400 lip 
(1.96 ± 1.40) 

232.7 
+13 7.0 

214.2 
±118.3 

250.0 
±146.2 

279.7 
±357.8 

106 .0  
±34.5 
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400 yg t ^ j.-r « A. 

(1.96 ± 1.40) ±137.0 ±118.3 ±146.2 ±157.8 ±34.5 

24,24- F 2-1,25-(0H)2D3 

25 ug 281.0 360.8 259.0 190.5 ND 
(0.26 ± 0.03) ±47.3 ±91.2 ±37.0 ±20.4 

100 yg 310.0 194.6 166.7 163.0 86.0 
(0.92 ± 0.29) ±208.6 ±155.5 ±79.2 ±22.5 ±30.6 

400 yg 180.1 68.5 64.6 148.0 65.0 
(1.22 ± 0.17) ±38.7 ±22.9 ± 4.6 ±63.6 ±14.5 

l,25-(OH)2D3 

25 yg 237.7 735.8 353.0 166.0 198.0 

(0.37 ± 0.28) ±82.1 ±429.5 ±98.6 ±33.5 ±30.6 

100 yg 582.0 
* 

872.6 811.5 602.0 690.0 
(0.30 ± 0.08) ±193.0 ±280.6 ±350.3 ±260.7 ±292.5 

400 yg 123.1 97.7 61.0 67.6 ND 
(0.71 ± 0.28) ±52.9 ±32.6 ±10.5 ±13.2 

^Values In parentheses are the pretrentnient baseline urinary calcium 

excretion rates in g/day. Data are reported as the mean ± SEM. ND = Not 

determined. Significantly different (P S 0.05) from control (ethanol) 

values. 
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SECTION II. 

USE OF 2A-F-1,25-DIHYDR0XYVITAMIN Dg TO PREVENT PARTURIENT 

PARESIS (MILK FEVER) IN DAIRY COWS 
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INTRODUCTION 

Parturient paresis (milk fever) continues to be a major source of 

loss in terms of productivity, increased predisposition to secondary 

disease problems, treatment costs, and cow deaths. Many measures to 

prevent parturient paresis have been suggested. Among these are 

adjustment of calcium content of prepartal diets (Hove, 1986; Jorgen-

sen, 1974) and the use of vitamin D and its derivatives (Barlet, 1977; 

Cast a^., 1979; Hibbs and Pounden, 1955; Hove and Kristiansen, 

1982; Sachs £t al., 1977). 

The major problem with the use of 1,25-dihydroxyvitamin Dg 

[1,25-(0H)2D3] and la-hydroxyvitamin D3 (la-OHDg) is in the timing of 

the administration of these sterols relative to parturition. When 

1,25-(0H)2D3 or la-OHDg are administered between 1 and 3 days before 

calving, they are effective in preventing parturient paresis (Hoffsis 

e_t al., 1978; Sachs e^ al., 1977). Outside this time period, they are 

less effective. Prevention of parturient paresis would be more 

practical if the period of efficacy of the vitamin D sterols could be 

extended so as to circumvent difficulties in predicting the actual 

time of parturition. 

The duration of action of 1,25-(0H)2D3 can be extended by fluori

dation of the 24th carbon which blocks 24-hydroxylation of the side-

chain of 1,25-(0H)2D3, a major degradative pathway (Okamoto et al., 

1983). We have found that 24-F-l,25-(0H)2D3 is about 1.5 times as 

potent and acts over a longer period than does 1,25-(0H)2D3 in 
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nonpregnant cows (Goff et al., 1986), Our objective was to develop a 

protocol for the prevention of parturient paresis in dairy cows using . 

24-F-l,25-(OH)2D3 administration. 



www.manaraa.com

65 

MATERIALS AND METHODS 

Twenty-nine periparturient Jersey cows, weighing between 400 and 

450 kg, were selected from the National Animal Disease Center research 

herd. All cows had at least three previous lactations and all had 

histories of parturient paresis at a previous calving. Six weeks 

prepartum, cows were fed alfalfa hay ad libitum and 4.5 kg concentrate 

feed, which supplied approximately 110 g calcium and 33 g phosphorus 

daily. Approximately 2 weeks prepartum, the cows received an addi

tional 7.3 kg of concentrate daily so that their diet supplied about 

150 g calcium and 76.8 g phosphorus per day in the last days of gesta

tion and for the first 2 weeks of lactation. 

Cows were randomly allocated to either the control group or one 

of the two treatment groups. Five days before the expected day of 

parturition, experimental cows were treated with either 100 ug (n = 7) 

or 150 yg (n = 10) of 24-F-l,25-(OH)2D3 intramuscularly (IM). Cows 

that did not calve within 7 days received a second dose of 24-F-l,25-

(0H)2D3. One cow in each experimental group did not calf within 7 

days of the second injection and was given a third injection of the 

experimental drug. Twelve control cows were left untreated. 

The 24-F-l,25-(OH)2D3 used in these trials was the gift of M. R. 

Uskokovic (Hoffmann-La Roche, Inc., Nutley, NJ). The concentration of 

24-F-l,25- (OHÏgDg was determined using UV spectroscopy (^£64 ~ 18,200 

m and then dissolved in Neobee oil at a concentration of either 100 

or 150 yg/ml. 
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Daily plasma samples were obtained from all cows between the 10th 

day prior to parturition and the 14th day postpartum. Around the time 

of parturition, sampling was more frequent. 

Concentrations of calcium and magnesium in plasma were determined 

by atomic absorption spectrophotometry (Perkin-Elmer Corp., 1965). 

Plasma inorganic phosphorus (Fiske and Subbarrow, 1925), hydroxypro-

line (Bannister and Burns, 1970), and creatinine (Chasson et al., 

1961) were determined by colorimetric methods adapted to an Auto-

Technicon Analyzer. Plasma parathyroid hormone (PTH) concentrations 

were determined by radioimmunoassay using an antibody directed against 

middle and N-terminal portions of the PTH molecule (Arnaud ££ al., 

1971). The method of Reinhardt et £l. (1984) was modified to allow 

determination of both 1,25-(0H)2D3 and 24-F-l,25-(0H)2D3 in plasma. 

24-F-l,25-Dihydroxyvltamin D3 and 1,25-(0H)2D3 comigrated on C18 

Sep-Pak Silica columns. Separation was achieved by subjecting the 

dihydroxyvitamin D metabolite fraction from the initial CIS Sep-Pak 

column to high-performance liquid chromatography (HPLC) on a Zorbax 

Sil column (0.45 x 25 cm, Dupont) developed in 3:97 isopropanol/methy-

lene chloride. Once separated, concentrations of both sterols were 

determined by using a radioreceptor assay (Reinhardt et. » 1984) . 

Recovery estimates for 1,25-(0H)2D3 were used to estimate recovery of 

24-F-1,25-(0H ) 2 D 3 .  
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RESULTS 

A summary of animal allocation and clinical results within each 

experimental group is presented in Table 1. Ninety-two percent of the 

control cows developed clinical parturient paresis. Most of these 

cases occurred between parturition (day 0) and 2 days postpartum. One 

cow became paretic 12 days after calving. Three of the 11 paretic 

control cows suffered relapses of parturient paresis requiring further 

treatment with intravenous calcium solution. 

Treatment of cows with either 100 pg or 150 yg of 24-F-l,25-

(0H)2D3 prior to parturition reduced the incidence of parturient 

paresis to 43% and 20%, respectively. No relapses were seen in the 

24-F-l,25-(0H)2D3-treated cows that developed parturient paresis. 

Plasma calcium concentrations of control and 24-F-l,25-(OH)2D3-

treated cows are presented In Figure 1. Data derived from the control 

cow that did not develop parturient paresis are Included in the data 

for the control cows. The degree of hypocalcemia exhibited by paretic 

24-F-l,25-(OH)2D3-treated cows is similar to that of control cows with 

paresis. Cows treated with 24-F-l,25-(OH)2D3 that did not develop 

paresis exhibited mild hypocalcemia when compared to control- or 

treated cows that developed paresis. 

Control cows exhibited a fivefold increase in plasma 1,25-(0H)2D3 

concentration around the time of parturition. Plasma concentrations 

of 1,25-(0H)2D3 were only slightly elevated in both paretic and 
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nonparetic 24-F-l,25-(0H)2D3-treated cows (Figure 2). Plasma concen

trations of 1,25-(0H)2D3 was inversely proportional to plasma calcium 

concentration in control cows, but not in paretic 24-F-l,25-(0H)2D3-

treated cows. 

Plasma concentrations of iPTH were similar in control and paretic 

24-F-l,25-(0H)2D3-treated cows (Figure 3), exhibiting a threefold 

increase around the time of parturition. Plasma iPTH was increased 

only slightly in nonparetic 24-F-l,25-(OH)2D3-treated cows. Plasma 

concentration of iPTH was inversely proportional to plasma calcium 

concentration in all cows. 

Plasma hydroxyproline concentrations were low in all cows prior 

to parturition and rose significantly in all caws after parturition. 

Plasma hydroxyproline and creatinine concentrations in control cows 

and 24-F-l,25-(OH)2D3-treated cows were not significantly different 

before or after parturition. 
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DISCUSSION 

These studies demonstrate that 24-F-l,25-(OH)2D3 can prevent 

parturient paresis in susceptible dairy cows. The greatest protection 

against parturient paresis was afforded by 150-vig doses of 24-F-l,25-

(OH^zDg. Cows that calved between one day and 7 days after the first 

injection were protected from parturient paresis. A second injection, 

7 days after the first, prevented parturient paresis for an additional 

7 days in all but one cow. When 24-F-l,25-(OH)2D3 was administered in 

100-Mg doses, the period of protection was less than 7 days (Table 1). 

We did not detect any undesirable effects of repeated 150-vig doses of 

24-F-l,25-(0H)2D3 in this study. Plasma creatinine concentrations 

were normal and did not change significantly in treated cows, 

indicating that renal function was not affected. A larger dose of 

24-F-l,25-(0H)2D3 might be more effective in preventing parturient 

paresis; however, the possibility of toxicity would be greatly 

increased as well. This conclusion is based on studies in nonpregnant 

cows in which 400-tig doses of 24-F-l,25-(OH) 203 caused significant 

reductions in renal glomerular filtration rate (Goff al., 1986). 

Hydroxyproline is an amino acid unique to collagen. Plasma levels of 

hydroxyproline can be useful indices of bone resorption activity (Dull 

and Henneman, 1963). However, because hydroxyproline of uterine 

origin also enters the blood after calving, the usefulness of 

hydroxyproline determinations is limited to the prepartal period. We 

did not observe any significant differences in prepartal plasma 
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hydroxyproline concentrations between control cows and those 24-F-

l,25-(0H)2D3-treated cows that had been injected more than 6 days 

prior to calving (data not shown). In controlled studies on nonpreg

nant cows, the administration of 1,25-(0H)2D3, 24-F-l,25-(OH)2D3, 

24,24-F2-1,25-(0H)2D3, and la-0HD3 either had no effect on or inhibited 

bone resorption (Bar al., 1985; Goff al., 1986). Our results 

confirm that vitamin D sterols do not stimulate bone resorption in 

dairy cows prior to parturition. The hypercalcemic activity of 

vitamin D sterols in ruminants resides primarily in their ability to 

enhance intestinal calcium absorption (Braithwaite, 1978; Hove, 1984). 

Despite nearly identical degrees of hypocalcemia, the 24-F-l,25-

(OH)2D3-treated cows that developed parturient paresis had much lower 

plasma 1,25-(0H)2D3 concentrations around the time of parturition than 

did control cows. The use of 24-F-l,25-(OH)2D3 inhibited the expected 

increase in plasma 1,25-(0H)2D3 as a homeostatic response to hypocal

cemia. Other vitamin D sterols are known to inhibit endogenous 

production of 1,25-(0H)2D3 in cows (Littledike £t £l., 1986), and 

24-F-l,25-(OH)2D3 probably acts similarly. While vitamin D sterols 

stimulate one calcium homeostatic mechanism (intestinal calcium 

absorption), they may inhibit the cow's natural homeostatic mechanisms 

that respond to hypocalcemia. 

We feel that a 150-ug dose of 24-F-l,25-(0H)283 enhances intesti

nal calcium absorption over a 7-day period to the extent that the 

calcium demands of initiating lactation can be met solely from dietary 

calcium. When. 24-F-l,25-(OH)2D3 is administered in lOO-yg doses. 
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intestinal calcium absorption is adequately enhanced to meet calcium 

demands for only about 5 days. 

Several groups have reported that vitamin D sterols reduced the 

incidence of parturient paresis occurring around the time of calving, 

but increased the incidence of parturient paresis occurring more than 

4 days postpartum (Hove, 1986; Littledike and Horst, 1982). Prolonged 

inhibition of the cow's natural homeostatic mechanisms were believed 

to have contributed to the development of hypocalcemia in these cases. 

In this study, only one 24-F-l,25-(0H)2D3-treated cow developed 

parturient paresis more than 4 days postpartum. However, climatic 

conditions were a major factor in this case. Ten days after this cow 

calved, Iowa received a severe snowstorm which prevented normal 

feeding and milking procedures that afternoon and the following 

morning. Shortly after being milked on the 11th day postpartum, the 

cow developed clinical parturient paresis. A possible significant 

difference between this study and earlier studies in which delayed 

cases of parturient paresis were prominent was the level of calcium 

supplied in the postpartum diet. The high calcium diet used in this 

study may have allowed the cows to better utilize the remaining 

calcium transport mechanisms as exogenous 24-F-l,25-(0H)2D3 action on 

the intestine declined. The vitamin D sterol-treated cow may have a 

greater requirement for dietary calcium after parturition than does 

the untreated cow. Endogenous 1,25-(0H)2D production is inhibited by 

these compounds, and it seems likely that hypercalcemia induced by 

these compounds during the peripartal period might leave bone calcium 
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resorption mechanisms inactivated. Thus, plasma calcium concentration 

in the vitamin D-treated cow may be dependent on just one branch of 

the calcium homeostatic mechanism-intestinal calcium absorption. We 

are currently investigating the efficacy of 24-F-l,25-(OH)2D3 in cows 

fed diets containing less calcium. 
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O—O CONTROL 
# # HONOFUXJRO-NOWLK FEVER 

A—A HONOaOURO-UILK FEVER 

0 I 2 
DAYS AROUND MRTURITION 

Figure 1. Plasma calcium concentration around the time of•parturition 
in control cows and cows treated with 24-F-l,25-(OH)2D3• 
Eleven of the 12 control cows and those 24-F-l,25-(OH)2D3-
treated cows that developed paresis were treated with 
intravenous calcium at their calcium nadir 
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DAYS AROUND PARTURITION 

Figure 2. Plasma 1,25-(OH)2D concentration around the time of par
turition in control cows and cows treated with 24-F-
1,25-(0H)2D3 
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5 

DAYS AROUND PARTURITION 

Figure 3. Plasma immunoreactive PTH concentration around the time of 
parturition in control cows and cows treated with 24-F-
1.25-(0H)2D3 
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Table 1. Summary of animal allocation and clinical results within 
each experimental group 

Interval from 
Control Calcium minimum Day of No. of treatment to 
cow observed occurrence relapses parturition 

Control 

1 4.9 +2 No-PP N/A 
2 3.8 +1 0 N/A 
3 4.5 +1 0 N/A 
4 3.7 +1.5 0 N/A 
5 3.7 +2 1 N/A 
6 3.3 +0.5 0 N/A 
7 4.7 0 0 N/A 
8 4.3 0 2 N/A 
9 3.5 +0.5 0 N/A 
10 4.0 0 0 N/A 
11 3.5 +1 1 N/A 
12 3.8 +12 0 N/A 

100 yg 24-F-1,25-(0H)2D3 

1 6.0 +0.5 No-PP 3 
2 5.5 +1 No-PP 7 
3 6.0 +2 No-PP 3 
4 7.6 +2 No-PP 3 
5 5.0 -0.5 0 1 
6 4.3 +0.5 0 7 
7 2.7 +1 0 7 

150 yg 24-F-1,25-(0H) 2 D 3  

1 7.7 +4 No-PP 6* 
2 6.2 +9 No-PP 1 
3 5.6 +3 No-PP 7 
4 6.1 +2 No-PP 6 * 
5 7.2 0 No-PP 0.5** 
6 5.8 0 No-PP 0*3* 
7 6.1 +0.5 No-PP 0 
8 6.2 +7 No-PP 2 
9 4.5 +0.5 0 1 * 
10 4.1 +11 0 0.5 

^No-PP = Did not develop clinical parturient paresis. N/A = Not 
* ** 

applicable. After 2nd dose of 24-F-l,25-(0H)2D3. After 3rd dose 

of 24-F-l,25-(OH)2D3. Calved within 4 hours after 2nd dose. 
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SECTION III. 

EFFECT OF SYNTHETIC BOVINE PARATHYROID HORMONE IN DAIRY COWS: 

PREVENTION OF PARTURIENT PARESIS (MILK FEVER) 
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INTRODUCTION 

Parturient paresis (milk fever) is primarily a hypocalcemia 

disorder of dairy cows associated with the onset of lactation. Though 

the predisposing factors, clinical signs, and clinical pathology of 

the syndrome have been well characterized, the basic cellular and 

biochemical mechanisms that cause parturient paresis are not well 

understood. In 1925, Dryerre and Greig suggested that the hypocal

cemia might be the result of Insufficient parathyroid hormone (PTH) 

secretion. However, subsequent workers using radloimmunological and 

histologic techniques concluded that PTH secretion in response to 

hypocalcemia in cows developing parturient paresis is equal to or 

greater than that of nonparetlc cows (Capen and Young, 1967; Horst £t 

al., 1978; Mayer et al., 1969). Several research groups (Hibbs "et 

al., 1947; Jackson et al., 1962; Little and Mattick, 1933) injected 

cows with crude extracts of PTH and found that older prepartal cows 

were less responsive to PTH than young cows and that PTH administra

tion did not prevent parturient paresis. Martig and Mayer (1972) 

observed that the prepartum cow responded to exogenous PTH, although 

this response was blunted when compared with the postpartal response. 

These findings lead to the current theory that the responsiveness of 

the target tissues to PTH stimulation may be deficient or delayed in 

the periparturient cow. 

Since these earlier reports, the physiologic function of PTH and 

its interactions with the vitamin D endocrine system have been 
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discovered. PTH is secreted in response to hypocalcemia and in turn 

stimulates renal conservation of calcium and release of calcium from 

bone stores. Also, by activating renal enzymes, PTH plays an intimate 

role in the production of 1,25-dihydroxyvitamin D [1,25-(0H)2D], which 

increases intestinal calcium absorption (DeLuca, 1979). 

Parturient paresis can be prevented by feeding cows very low 

calcium diets (< 20 g/d) for 2 wk prior to parturition (Goings et al., 

1974). This stimulates endogenous PTH secretion which in turn 

increases renal production of 1,25-(0H)2D. Together, PTH and 

1,25-(0H)2D stimulate mechanisms that resorb bone calcium and increase 

the active transport of calcium across the intestinal epithelium 

(Green et al., 1981; Kichura et al., 1982). The effectiveness of the 

low calcium diet in preventing parturient paresis suggested that 

calcium homeostatic mechanisms had to be primed during the prepartal 

period if they were to be fully responsive to the calcium demand 

associated with the onset of lactation. 

The purpose of the present study was to determine if exogenous 

PTH administration could also prime the calcium homeostatic mechanisms 

and thus prevent parturient paresis. 
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MATERIALS AND METHODS 

Pregnant Cow Experiment 

Nine Jersey cows in the last trimester of pregnancy, weighing 

between 380 and 440 kg, were kept in individual stanchions and fed a 

complete pelleted diet that supplied 10.1 MCal Net Energy, 0.83 kg 

protein, 68 g calcium, and 35 g phosphorus daily. 

Teflon catheters were placed in one external jugular vein under 

local anesthesia 12 to 20 h before the start of the experiment. At 

the same time, a noninvasive urine collection device was sutured to 

the cow's perineal region under standing epidural anesthesia. Urine 

was collected in polyurethane bottles to which 100 ml glacial acetic 

acid had been added as a preservative before the start of each 

collection period. 

All cows were infused intravenously with 0.9% saline containing 

0.2% bovine serum albumin (BSA) without PTH for 32 to 48 h and then 

infused with 0.9% saline containing BSA and PTH in accord with one of 

three treatment regimens. Bovine serum albumin was added to infusion 

solutions to minimize loss of PTH activity as a result of nonspecific 

binding of protein to glass and tubing. Highly-purified BSA 

(essentially fatty acid and globulin-free, Sigma Chemical Co., St. 

Louis, MO) was used to minimize introduction of endotoxins into 

infusion solutions. Crude synthetic N-terminal 1-34 fragment of 

bovine PTH (lot #007242, Peninsula Laboratories, Inc., San Carlos, CA) 

containing 767 units/mg (Nissenson al., 1981) was given to four 
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cows at a rate of 146 yg/h for 48 h (3.5 mg/d), to three cows at a 

rate of 146 wg/h for 96 h (3.5 mg/d), and to two cows at a rate of 73 

Ug/h for 96' h (1.7 mg/d). The PTH solution was prepared fresh every 

24 h and contained 1 to 2 ml of a stock solution of PTH in 0.01 M 

acetic acid diluted in sterile 0.9% saline containing 0.2% BSA. 

Infusate solutions were maintained in ice water and delivered at a 

rate of 0.5 ml/min by means of an external infusion pump (Rainin 

Instrument Co., Inc., Emeryville, CA). 

Blood samples were taken by subcutaneous abdominal (milk vein) 

venipuncture at regular intervals throughout the experiment. Plasma 

was separated immediately by centrifugation and stored at -15°C until 

analyzed. Urine was collected over 8- or 12-h periods throughout the 

experiment. Volumes were recorded, and a representative sample was 

frozen for analysis. 

Periparturient Cow Experiment 

Eight periparturient Jersey cows, weighing between 400 and 450 

kg, were selected from the National Animal Disease Center research 

herd. All cows had at least three previous lactations and all had 

histories of parturient paresis at a previous calving. Six-wk 

prepartal cows were fed alfalfa hay ad libitum and 4.5 kg concentrate 

feed that supplied approximately 110 g calcium and 33 g phosphorus 

daily. Approximately 2 wk prepartum, the cows received an additional 

7.3 kg of concentrate daily so that their diet contained approximately 
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150 g calcium and 78 g phosphorus per d in the last days of gestation 

and for the first 2 wk of lactation. 

Approximately 3 wk prepartum, a small programmable titanium pump 

(Medtronics Inc., Minneapolis, MN) was implanted under the skin of 

four of the cows. In two of the cows, the pump was located in the 

paralumbar fossa and was connected to a teflon catheter placed in the 

circumflex iliac vein. The pump was implanted in the neck in two 

other cows and connected to a catheter in the jugular vein. All 

surgery was performed under local anesthesia (lidocaine). Ace-proma-

zine (20 mg. Fort Dodge Laboratories, Fort Dodge, lA) was used as a 

sedative. High epidural spinal block was used in the case of the cows 

with the catheterized circumflex iliac vein. The pump had a 20-ml 

reservoir that could be refilled by injection through the skin into a 

silicone port on the pump. Four other cows (that did not undergo 

surgery) served as controls. 

All four treated cows received saline at a rate of 8.7 ml/d from 

the time of surgery until the PTH solution was administered. PTH 

solutions were made up every 48 h to refill the pump by dilution of 

stock PTH (in 0.01 M acetic acid) with 0.1% bovine serum albumin 

saline. 

Cow #1 received PTH at a rate of 217 yg/h from 60 h prepartum to 

12 h prepartum, at which time the infusion rate was decreased to 104 

yg/h and continued until 55 h postpartum. 

Cow #2 received PTH at a rate of 104 yg/h from 116 h prepartum 

until 55 h postpartum. 
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Cow #3 received PTH at a rate of 58 pg/h from 16 h prepartum to 5 

h postpartum, at which time the rate was increased to 146 yg/h and 

continued until 48 h postpartum. At that time, the infusion rate was 

returned to 58 pg/h for another 48 h. 

Cow #4 received PTH at a rate of 104 yg/h beginning 10 h pre

partum and continuing until 96 h postpartum. 

Plasma samples were obtained by jugular venipuncture on the side 

opposite the pump daily prior to parturition and for 14 d postpartum. 

Around the time of parturition sampling was more frequent. 

Parameters Monitored 

Concentrations of calcium and magnesium in plasma and urine were 

determined by atomic absorption spectrophotometry (Perkin-Elmer 

Corporation, 1965). Plasma and urine inorganic phosphorus concentra

tions were determined colorimetrically (Fiske and Subbarrow, 1925). 

Concentrations of hydroxyproline in plasma and urine were 

monitored as an estimate of bone resorption activity (Dull and 

Henneman, 1963). Free plasma hydroxyproline and total urinary 

hydroxyproline were determined colorimetrically (Bannister and Burns, 

1970; Hosley e^ al., 1970). Renal function was assessed by monitoring 

urine specific gravity and renal glomerular filtration rate. 

Glomerular filtration rate was estimated by determining endogenous 

creatinine clearance rate. Plasma and urine creatinine concentrations 

were determined colorimetrically on an AutoTechnicon Analyzer (Chasson 

e^ £l., 1961). Plasma concentrations of 1,25-(OH)2D were determined 



www.manaraa.com

87 

as described by Reinhardt e£ £l. (1984). Plasma PTH concentrations 

were determined by radioimmunoassay using an antibody directed against 

middle and N-terminal portions of the PTH molecule (Arnaud ̂  aJ., 

1971). 

The differences between the observed values at each time point 

during the infusion and the values observed during the control period 

prior to infusion were determined for each parameter measured. 

Student's paired ̂  test was used to test the hypothesis that the mean 

difference was equal to zero. 
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RESULTS 

Pregnant Cow Experiment 

Parathyroid hormone infusion at 146 pg/h for 48 h resulted in 

significant changes in plasma calcium, 1,25-(0H)2D, and magnesium 

concentrations (Table 1, Figure 1). Plasma calcium was increased 32% 

(P < 0.05), while plasma phosphorus was decreased 30% (P < 0.05) after 

48 h of infusion. Plasma concentration of magnesium increased more 

rapidly than did calcium concentration and also decreased more rapidly 

once PTH infusion ended. No significant changes were seen in plasma 

hydroxyproline or plasma PTH concentrations. 

Plasma 1,25-(OH)2D,concentrations increased within 8 h (Figure 2) 

and were maximal between 24 and 32 h after the start of infusion, at 

which time they were 4 to 5 times pretreatment levels. Although 

plasma 1,25-(OH)2D concentrations decreased as infusion of PTH 

continued, they remained above preinfusion levels. Within 48 h after 

PTH infusion ended, plasma 1,25-(0H)2D concentrations were equivalent 

to pretreatment concentrations. 

Parathyroid hormone caused a rapid decrease in urinary excretion 

of calcium and magnesium within 24 h of the sta.rt of infusion. Once 

PTH infusion was stopped, urinary excretion of calcium increased to 

nearly four times the rate during the control period. In contrast, 

there was no excessive loss of magnesium via the urine when PTH was 

withdrawn. Urinary phosphorus excretion was significantly increased 

(P < 0.05) by PTH infusion and remained high for 48 h after PTH was 
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withdrawn. Urinary excretion of hydroxyproline was not increased by 

48 h of infusion of 146 yg PTH/h. 

The effects of infusion of PTH for 96 h were similar to those 

seen when PTH was administered for only 48 h (Table 2, Figure 1). 

Plasma calcium concentration increased linearly as long as PTH 

infusion was maintained (Figure 1). Plasma concentration of 

1,25-(OH)2D was greatly elevated by PTH infusion initially. However, 

as PTH infusion continued, the mean plasma concentration of 1,25-

(OHOaD decreased so that by the end of the infusion period plasma 

1,25-(0H)2D concentration was only about two times the pretreatment 

level (Figure 2). Plasma concentration of hydroxyproline was signif

icantly increased after 72 h of PTH infusion (P < 0.05) and continued 

to increase until PTH infusion ceased. Plasma hydroxyproline concen

tration returned to pretreatment level within 24 h after PTH with

drawal. 

Urinary losses of calcium, phosphorus, and magnesium paralleled 

those changes seen during the 48-h infusion experiment (data not 

shown). An important difference was that urinary excretion of 

hydroxyproline was significantly increased (P < 0.05) between 48 and 

96 h of PTH infusion (Figure 3). Urinary hydroxyproline excretion 

rapidly returned to pretreatment levels when infusion ceased. 

Between 72 and 96 h of the infusion period, feed intake was 

greatly reduced. This corresponds to the time of maximal hypercal

cemia. Appetite returned to normal about 48 h after PTH infusion 

ceased. 
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When 73 ug PTH/h was administered for 96 h, there were no 

significant changes in plasma concentrations of calcium, hydroxypro-

line, 1,25-(0H)2D, magnesium, phosphorus, or PTH (Table 2). There 

were no significant changes in the urinary excretion rates for 

calcium, magnesium, or hydroxyproline. However, 73 yg PTH/h did 

increase urinary phosphorus excretion (P < 0.05) during the infusion 

period (data not shown). 

Plasma concentrations of immunoreactive PTH (iPTH) were not 

significantly increased during any of the PTH infusions, even at the 

146 yg PTH/h dose (Table 1). Plasma PTH levels did not decrease 

significantly once PTH Infusion ceased. 

Parathyroid hormone treatment did not result in any significant 

changes in renal glomerular filtration rate during the course of these 

trials (data not shown). Urine specific gravity was lower at the end 

of the 146 yg/h infusion periods than before infusion, but the cows 

did not exhibit any other indications that renal function was 

impaired. 

Periparturient Cow Experiment 

All four of the cows that did not receive PTH infusions developed 

severe hypocalcemia, became recumbent with parturient paresis (Figure 

4), and required treatment with an Intravenous solution containing 

calcium, magnesium, and phosphorus (Norcalciphos, Norden Labs., 

Lincoln, NE). One control cow suffered a relapse, requiring a second 

treatment. 
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The two cows that received PTH intravenously for at least 60 h 

before parturition (Nos. 1 and 2, Figure 5) did not become hypocal-

cemic at any time during the experiment. Both cows were actually 

hypercalcemic at parturition in contrast to the control cows. The two 

cows that began receiving PTH intravenously less than 24 h prior to 

parturition (Nos. 3 and 4, Figure 6) were hypocalcemic at parturition 

and shortly after. Cow #3 never exhibited any symptoms of parturient 

paresis, though her plasma calcium was 5.8 mg/100 ml at 18 h 

postpartum. Between 18 and 36 h postpartum, her plasma calcium rose 

rapidly and she became slightly hypercalcemic. Cow #4 exhibited 

several signs of parturient paresis, though she never became 

recumbent. She was dull, inappetant, and exhibited muscle tremors. 

She remained severely hypocalcemic (approximately 4.0 mg/100 ml) 

during the 48 h following parturition. Her plasma calcium then 

increased rapidly until by 96 h postpartum she was slightly 

hypercalcemic, at which time the PTH infusion was ended. None of the 

PTH-treated cows developed any significant hypocalcemia from the time 

PTH infusion was ended until the time sampling ceased (day 14 post

partum) . 

The control cows exhibited great increases in plasma concentra

tions of PTH and 1,25-(OH)2D which were inversely proportional to the 

degree of hypocalcemia present (Figure 4). The two PTH-treated cows 

that became hypocalcemic also responded by greatly increasing plasma 

PTH and 1,25-(OH)2D concentrations (Figure 6). The two cows that 

received PTH and did not develop hypocalcemia did not have greatly 
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elevated levels of PTH or 1,25-(0H)2D during the infusion period 

(Figure 5). 
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DISCUSSION 

Parathyroid hormone is an important regulator of renal la-hydroxy-

lase and, therefore, synthesis of 1,25-(OH)2D, which is necessary for 

active transport of calcium across the intestinal epithelium. While 

it is clear that PTH can stimulate la-hydroxylase activity under 

hypocalcemic conditions (Aksnes and Aarskog, 1980; Treschel et al., 

1980; Kremer and Goltzman, 1982), the effects of PTH under normocal-

cemic or even slightly hypercalcemic conditions are not clearly 

defined. 

Hove e^ al. (1984) reported that PTH infusion increased plasma 

1,25-(OH)2D concentrations when administered to thyroparathyroidecto-

mized lactating goats that were hypocalcemic, but not if the goats 

were hypercalcemic. This suggested that hypercalcemia may block PTH 

stimulation of renal la-hydroxylase. 

When we administered 146 yg PTH/h to pregnant dairy cows in late 

gestation, a fivefold increase in plasma concentrations of 1,25-(0H)2D 

developed after 32 h of infusion. The concentration of 1,25-(OH)2D 

decreased as the PTH infusion continued. However, even after 2 d of 

hypercalcemic conditions, plasma concentrations of 1,25-(OH)2D re

mained above pretreatment levels. We conclude that hypercalcemia 

blunts the responsiveness of plasma 1,25-(0H)2D to exogenous PTH, but 

does not eliminate it. In support of this conclusion is the observa

tion that plasma 1,25-(OH)2D concentrations in humans with primary 
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hyperparathyroidism are often elevated despite hypercalcemia (Broadus 

al., 1980; Gray et al., 1977; Haussier £t al., 1975). 

Parathyroid hormone administration to pregnant cows dramatically 

increased urinary excretion of phosphorus while decreasing urinary 

calcium losses as seen in earlier experiments (Mayer et. » 1966). 

In contrast to PTH effects in humans (Aksnes and Aarskog, 1980), 

phosphaturia is not an immediate response to PTH administration in 

cows. We did not detect significant phosphaturia in the cows until 

after 38 to 48 h of PTH infusion. This also coincides with the time 

of development of hypercalcemia in the cows. Possibly, calcitonin 

secretion in response to the hypercalcemia may be responsible for much 

of the phosphaturia seen (Munson, 1976). PTH decreased urinary 

calcium loss, but the total amount of calcium conserved was actually 

less than 500 mg/d for most cows. 

Plasma hydroxyproline concentration and urinary hydroxyproline 

excretion were increased at 72 and 96 h of PTH infusion at 146 yg/h. 

The 3-day lag time between the start of PTH infusion and the stimula

tion of significant bone resorption may explain the failure of PTH 

infusion to prevent hypocalcemia in those pregnant cows that calved 

less than 24 h after the start of PTH infusion. If maintained for at 

least 3 d, exogenous PTH can stimulate bone resorption in the pregnant 

cow. 

Infusion of bovine N-terminal 1-34 PTH had obvious physiologic 

effects on the cows; however, we could not detect any increase in 

plasma PTH concentration. Depending on the antlsera used. 
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radioimmunoassay of PTH detects varying amounts of both active and 

inactive fragments of PTH. Bioassays of plasma PTH concentrations in 

man indicate that only about 1% of the radioimmunoassayable PTH is 

biologically active (Nissenson et al., 1981). Therefore, even if PTH 

infusion into cows greatly increased the amount of biologically active 

PTH circulating in plasma, it is unlikely it could be detected by 

radioimmunoassay. Our data suggest that the ability of cows to 

secrete or produce biologically active PTH in the prepartal period may 

not be adequate. Whether this is a defect in the form or amount of 

PTH secreted or in peripheral metabolism necessary for activation of 

PTH Is not known. Characterization of the forms of PTH secreted and 

its peripheral metabolism in the periparturient cow will be crucial to 

establish the fundamental pathogenesis of parturient paresis. 

The management of our experimental herd of Jersey cows results in 

an extremely high incidence of parturient paresis. Of the 28 cows 

that have been subjected to our high-calcium feeding regime, 26 

developed parturient paresis. Prepartal PTH administration to the 

four periparturient cows in this study prevented parturient paresis in 

all four cows and the development of hypocalcemia in two of the cows. 

Parathyroid hormone may be able to prevent parturient paresis because 

it stimulates bone resorption of calcium and enhances intestinal 

absorption of calcium. Although PTH can cause a significant reduction 

in urinary calcium losses, the amount of calcium conserved is not 

likely to contribute significantly to the maintenance of plasma 

calcium in the paresis-prone cow. 
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Vitamin D metabolites have been used to prevent parturient 

paresis (Bar e£ al., 1985; Barlet, 1977; Cast £t al., 1979; Hibbs and 

Pounden, 1955; Hoffsis e_t al., 1978; Hove and Kristiansen, 1982; 

Jorgenson et al., 1978; Julien et al., 1977; Littledike and Korst, 

1979; Manston and Payne, 1964; Olsen ̂  £l., 1972), but they act only 

to enhance intestinal calcium absorption (Braithwaite, 1978; Hove, 

1984). They do not increase bone resorption in the cow (Goff e£ al., 

1986) , probably because the hypercalcemia resulting from enhanced 

intestinal calcium absorption inhibits endogenous secretion of PTH 

necessary for bone resorption. In cows pretreated with vitamin D 

metabolites that develop parturient paresis, the endogenous 

1,25-(OH)2D response to hypocalcemia is inhibited (Littledike et al., 

1981). When vitamin D metabolites fail to prevent hypocalcemia, the 

resulting parturient paresis is often clinically more severe than 

normal parturient paresis (Littledike and Horst, 1979), suggesting 

that vitamin D compounds replace the cow's calcium homeostatic 

mechanisms rather than augment them. In the two cows (Nos. 3 and 4) 

in the present study that became hypocalcemic despite PTH infusion, 

plasma concentrations of PTH and 1,25-(OH)2D indicate that there is no 

suppression of endogenous PTH or 1,25-(OH)2D production in response to 

hypocalcemia. In contrast to the vitamin D compounds, it appears that 

exogenous PTH may augment the cow's homeostatic mechanisms rather than 

replace them. 

There was no evidence of renal toxicity during the administration 

of PTH to cows in these experiments. . Because PTH lowers plasma 
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phosphorus as it increases plasma calcium concentrations, the danger 

of metastatic calcification due to PTH administration should be less 

than that seen with the vitamin D compounds. However, the hypercal-

cemic activity of PTH dictates that the nephrotoxic potential of PTH 

needs to be carefully characterized. 

Parathyroid hormone may prove superior to vitamin D administra

tion to prevent parturient paresis for several reasons. It is capable 

of stimulating bone resorption as well as intestinal calcium absorp

tion at the time of parturition. Because it lowers plasma phosphorus, 

any hypercalcemia it induces should be less toxic than the hypercal

cemia and hyperphosphatemia Induced by vitamin D compounds. Parathy

roid hormone administration should present little risk to the consumer 

of milk or meat from treated animals as it is inactivated when in

gested. These considerations and the results of this study lead us to 

conclude that PTH has potential for therapeutic intervention in dairy 

management. 
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Figure 1. Plasma calcium concentration of pregnant cows that 
received intravenous infusion of synthetic bovine 
PTH-(l-34) at a rate of 146 ug/h. Mean ± SE of four cows 
that received PTH between h 0-48 (0 0). Mean ± SE of 
three cows that received PTH between h 0-96 (0 0) 
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Figure 2. Plasma 1,25-(OH)jD concentration of pregnant cows that 
received intravenous infusion of synthetic bovine 
PTH-(l-34) at a rate of 146 ug/h. Mean ± SE of four cows 
that received PTH between h 0-48 (0 0). Mean ± SE of 
three cows that received PTH between h 0-96 (0 0) 
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PRETREATWENT PTH INFUSION PERIOO, 

DAY OF 24 HOUR URINE COLLECTION 

Figure 3. Daily total urinary hydroxyproline excretion before, 
during, and after treatment of three pregnant cows with 
synthetic bovine PTH-(l-34) at a rate of 146 pg/h for 96 
h. Mean ± SE. Astrisk denotes significantly different 
from pretreatment (P < 0.05) 
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Table 1. Plasma concentrations of minerals, 1,25-(0H)2D, PTH and OH 
OH-proline 24-h excretion rates in cows in late gestation 
146 yg PTH/h for 48 h (mean ± SE, n = 4) 

PTH infusion 
Control Day 1 Day 2 

Plasma concentrations 

Calcium 
(mg/dl) 

8.8 + 0.2 9.8 0.3* 11.6 ± 0 

Phosphorus 
(mg/dl) 

5.7 + 0.4 4.7 + 0.6* 4.0 ± 0 

Magnesium 
(mg/dl) 

2.10 + 0.09 2.78 + 
** 

0.11 2.57 ± 0 

1,25-(0H) 2 D  

(pg/ml) 
16.7 + 2.3 78.0 ± 

*** 
10.6 57.5 ± 1 

OH-Proline 
(pg/ml) 

1.23 + 0.14 1.41 + 0.25 1.54 ± 0 

PTH (ng/ml) 0.52 + 0.12 0.67 0.17 0.58 ± 0 

Urinarv excretion rates 

Calcium 
(mg/h) 

31.3 + t:9 6.5 + 
** 

1.3 7.7 ± 4. 

Phosphorus 
(mg/h) 

274 + 91 310 + 48 789 ± 61 

Magnesium 
(mg/h) 

21.6 ± 2.5 15.9 ± 3.4** 14.8 ± 2. 

OH-Proline 5.45 + 2.17 6.70 + 3.49 7.43 ± 4. 

* ** *x* 
P < 0.10. P < 0.05. P < 0.025 
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OH-proline and urinary mineral and 
m before, during and after they received 

Recovery 
Day 1 Day 2 

9.7 ± 0.4 8.8 ± 0.3 

6.4 ± 0.9 5.9 ± 0.4 

*** ** 
1.70 ± 0.06 1.79 ± 0.01 

** 
± 13.2 21.0 ± 2.1 15.0 ± 1.0 

1.28 ± 0.19 1.48 ± 0.03 

0.46 ± 0.17 0.63 ± 0.01 

4.6* 140.7 ± 51.0* 78.0 ± 18.6 

** *** ,*** 
61 1059 ± 220 1222 ± 194 

2.3*** 17.8 ± 4.2 10.9 ± 3.3* 

4.20 5.81 ± 2.30 5.85 ± 2.14 
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Table 2. Plasma calcium, OH-proline, and 1,25-(0H)2D concentrations dur 
in cows in late gestation (mean ± SE) 

PTH infusion 
Control Day 1 Day 2 Day 3 

73 ug PTH/h for 96 h (n = 2) 

Calcium 
(mg/ml) 

1,25-(OH)2D 
(pg/ml) 

OH-?roline 
(ug/ml) 

146 ug PTH/h 

Calcium 
(mg/dl) 

OH-Proline 
(ug/ml) 

9.7 ± 0.1 

6.1 ± 1.6 

0 .86  ±  0 .20  

for 96 h fn = 3) 

8.2 ± 0.3 

32.1 ± 10.1 

0.98 ± 0.11 

9.4 ± 0.4 

20.5 ± 6.5 

1.00 ± 0.30 

9.0 ± 0.9 

113.3 ± 26.8 

1.10 ± 0.19 

9.6 ± 0.4 

20.5 ± 1.5 

0.89 ± 0.26 

11 .1  ±  0 .8*  

81.0 ± 21.5 

1.20 ± 0.19 

9.3 ± 0.0 

18.0  ± 10 .0  

0.95 ± 0.25 

13.1 ± 0.1* 

78.3 ± 26.8 

1.37 ± 0.16 

* AA **)'( 
P < 0.10. P < 0.05. P < 0.025 
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wring the infusion of PTH for 96 h 

Recovery 
Day 4 Day 1 Day 2 

10.3 ± 0.4 9.7 ± 0.2 9.5 ± 0.8 

0 20.0 ± 5.0 11.0 ± 8.0 20.5 ± 9.8 

15 0.95 ± 0.35 1.15 ± 0.35 

L* 15.1 ± 1.5** 11.4 ± 1.0* 9.3 ± 0.4 

,8 63.7 ± 28.6 21.3 ± 5.1 8.7 ± 4.9 

16 1.54 ± 0.11 1.01 ± 0.01 0.94 ± 0.06 
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SUMMARY AND DISCUSSION 

Feeding cows a low calcium diet prior to parturition is an 

effective, but not universally practical, means of preventing parturi

ent paresis. The effectiveness of this method is probably due to the 

stimulation of PTH and 1,25-dihydroxyvitamin D production prior to 

parturition which primes the bone and gut so that the calcium demands 

of lactation can be met. In Section I of this thesis, the effects of 

administration of 1,25-dihydroxyvitamin D and its analogues were 

examined. We found that vitamin D action on the intestine was the 

only positive prophylactic effect one could expect in the cow. These 

studies also determined that renal function can be impaired by higher 

doses of these compounds. In Section II of this thesis, we have 

demonstrated that 24-F-l,25-dihydroxyvitamin D can be successfully 

used to prevent parturient paresis in dairy cows and that it may be 

superior to 1,25-dihydroxyvitamin D for this purpose. However, the 

study also points out that the vitamin D compounds are only effective 

when given within a certain time frame prior to parturition. 

In Section III of this thesis, we have demonstrated that PTH can 

prevent parturient paresis in dairy cows. We have demonstrated that 

it acts by stimulating bone resorption, renal conservation of calcium 

and production of 1,25-dihydroxyvitamin D which, in turn, stimulates 

intestinal calcium absorption. We conclude that PTH has tremendous 

potential for prevention of parturient paresis. The obstacle to its 

use will be cost of the hormone and a method of delivery of the PTH. 
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